Advertisement

Optical Directional Couplers

  • Sasson Somekh

Abstract

The optical directional coupler, analogous to the microwave element1 of the same name, consists of parallel channel optical waveguides sufficiently closely spaced that energy is transferred from one to another. For this coupling to take place cumulatively over a substantial length, the light must propagate with the same phase velocity in each channel. The fraction of the power coupled per unit length is determined by the overlap of the modes in the separate channels. Thus, it depends on the separation of the guides, the mode penetration into the substrate, and the interaction length. Figure 1 is an example of a multichannel directional coupler. It shows a diagram of a large number of coupled waveguides (produced by proton implantation) and typical intensity profiles of the guided light. The incident light is focused into a single channel at z = 0, but is coupled into the adjacent guides as it propagates.

Keywords

Coupling Coefficient Directional Coupler Mode Profile Planar Guide Couple Mode Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Louisell, Coupled Modes and Parametric Electronics (John Wiley and Sons, New York, 1960).Google Scholar
  2. 2.
    E. A. J. Marcatili, “Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics,” Bell Syst. Tech. J. 48, 2071 (1969).Google Scholar
  3. 3.
    E. Garmire, H. Stoll, A. Yariv, and R. G. Hunsperger, “Optical Wave-Guiding in Proton-Implanted GaAs,” Appl. Phys. Lett. 21, 87 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    D. Marcuse, “The Coupling of Degenerate Modes in Two Parallel Dielectric Waveguides,” Bell Syst. Tech. J. 50, 1791 (1971).Google Scholar
  5. 5.
    M. F. Bracey, A. L. Cullen, E. F. F. Gillespie, and J. A. Staniforth, “Surface-Wave Research in Sheffield,” IRE Trans. Antennas and Propagation AP-7, Special Supplement, S219 (1959).ADSCrossRefGoogle Scholar
  6. 6.
    N. S. Kapany, Fiber Optics (Academic Press, New York, 1967).Google Scholar
  7. 7.
    J. E. Goell, “A Circular-Harmonic Computer Analysis of Rectangular Dielectric Waveguides,” Bell Syst. Tech. J. 48, 2133 (1969).Google Scholar
  8. 8.
    S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, and R. G. Hunsperger, “Channel Optical Waveguide Directional Coupler,” Appl. Phys. Lett. 22, 46 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    See for example, A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971).Google Scholar
  10. 10.
    D. Hall, A. Yariv, and E. Garmire, “Optical Guiding and Electrooptic Modulation in GaAs Epitaxial Layers,” Opt. Commun. 1, 403 (1970)ADSCrossRefGoogle Scholar
  11. 10a.
    Also, D. Hail, A. Yariv, and E. Garmire, “Observation of Propagation Cutoff and Its Control in Thin Optical Waveguides,” Appl. Phys. Lett. 17, 127 (1970).ADSCrossRefGoogle Scholar
  12. 11.
    F. K. Reinhart and B. I. Miller, “Efficient GaAs-AlxGa1-xAs Double-Heterostructure Light Modulators,” Appl. Phys. Left. 20, 36 (1972).ADSCrossRefGoogle Scholar
  13. 12.
    V. Ramaswamy, “Epitaxial Electrooptic Mixed Crystal (NH4)xK1-xH2PO4 Film Waveguide,” Appl. Phys. Lett. 21, 183 (1972).ADSCrossRefGoogle Scholar
  14. 13.
    P. K. Tien, R. J. Martin, S. L. Blank, S. H. Wemple and L. J. Vernerin, “Optical Waveguides of Single-Crystal Garnet Films,” Appl. Phys. Lett. 21, 207 (1972).ADSCrossRefGoogle Scholar
  15. 14.
    P. K. Tien, R. J. Martin, R. Wolfe, R. C. LeCraw, and S. L. Blank, “Switching and Modulation of Light in Magneto-Optic Waveguides of Garnet Films,” Appl. Phys. Lett. 21, 394 (1972).ADSCrossRefGoogle Scholar
  16. 15.
    W. E. Martin and D. B. Hall, “Optical Waveguides by Diffusion in II–VI Compounds,” Appl. Phys. Lett. 21, 325 (1972).ADSCrossRefGoogle Scholar
  17. 16.
    P. K. Tien, “Light Waves in Thin Films and Integrated Optics,” Appl. Optics 10, 2395 (1971).ADSCrossRefGoogle Scholar
  18. 17.
    A. Yariv, “Coupled Mode Theory for Guided-Wave Optics,” to be published in IEEE J. Quantum Electron. (1973).Google Scholar
  19. 18.
    E. Garmire, “Integrated Optics in Semiconductors,” Presented at the Solid State Circuits Conference, NEREM 1972.Google Scholar
  20. 19.
    H. R. Garvin, E. Garmire, S. Somekh, H. Stoll and A. Yariv, “Ion Beam Micromachining of Integrated Optics Components,” Appl. Optics 12, 455 (1973).ADSCrossRefGoogle Scholar

Copyright information

© University of California 1974

Authors and Affiliations

  • Sasson Somekh
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations