Advertisement

The Effects of Ion Bombardment on the Thin Film Oxidation Behavior of Zircaloy-4 and Zr-1.0 Nb

  • J. A. Spitznagel
  • L. R. Fleischer
  • W. J. Choyke

Abstract

The oxidation rates of Zircaloy-4 and Zr-1.0 Nb in oxygenated water at 360°C were suppressed by prior ion bombardment. 0+, Ar+, and Xe+ accelerated to energies in the 67 to 150 keV range to fluences of 5 x 1013 to 1 x 1016 ions/cm2 provided lattice damage on the order of 10 to 100 dpa. Subsequent autoclave oxidation was used to explore the damage effects on reaction rate. Since annealing accompanied oxidation, several sequential bombardment/ oxidation cycles were performed on each sample. Oxidation of bombarded surfaces was much more uniform than that observed on control samples.

Keywords

Oxide Film Oxidation Rate Anion Diffusion Lattice Damage Unirradiated Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.W. Smeltzer. R.R. Haering, and J.S. Kirkaldy, Acta Met.9, 880 (1961).CrossRefGoogle Scholar
  2. 2.
    C.S. Campbell and C. Tyzack, Br. Corros J. 5, 172 (1970).CrossRefGoogle Scholar
  3. 3.
    B. Cox, J. Nucl. Mater. 28, 1–47 (1968).CrossRefGoogle Scholar
  4. 4.
    R.C. Asher, D. Davies, T.B.A. Kirstein, P.A.J. McCullen, and J.F. White, Corros. Sci.10, 695 (1970).CrossRefGoogle Scholar
  5. 5.
    F.A. Nichols, J. Nucl. Mater. 30, 249 (1969).CrossRefGoogle Scholar
  6. 6.
    P.J. Harrop, J.N. Wanklyn, J. Nucl. Mater. 22, 350 (1967).CrossRefGoogle Scholar
  7. 7.
    B. Cox, K. Alcock, and F.W. Derrick, J. Electrochem. Soc. 106, 129 (1961).CrossRefGoogle Scholar
  8. 8.
    N.J. Doyle, J.M. Bogdon, and W.J. Choyke, to be published.Google Scholar
  9. 9.
    W.S. Johnson, J.F. Gibbons, Projected Range Statistics in Semiconductors, Stanford University Press, Palo Alto (1969).Google Scholar
  10. 10.
    J. Lindhard, M. Scharff, Phys. Rev. 124, 128 (1961).CrossRefGoogle Scholar
  11. 11.
    J. Lindhard, M. Scharff, H.E. Schiott, Mat. Fys. Medd. Dan.Vid. Selsk. 33 (1963).Google Scholar
  12. 12.
    F.A. Garner, to be published.Google Scholar
  13. 13.
    F.A. Garner, personal communication.Google Scholar
  14. 14.
    G.H. Kinchin, and R.S. Pease, Rept. Prog. Phys. 18, 1 (1955).CrossRefGoogle Scholar
  15. 15.
    G.P. Airey and G.P. Sabol, J. Nucl. Mater. 45, 60 (1972).CrossRefGoogle Scholar
  16. 16.
    B. Cox and J.P. Pemsler, J. Nucl. Mater. 28, 73 (1968).CrossRefGoogle Scholar
  17. 17.
    G.P. Sabol, S.G. McDonald, and G.P. Airey, to be published in the Proceedings of the ASTM/AIME Symposium on Zirconium in Nuclear Applications, Portland, Oregon, August 1973.Google Scholar
  18. 18.
    J.R. Johnson, Trans. AIME 212, 13 (1958).Google Scholar
  19. 19.
    P.J. Harrop and J.N. Wanklyn, J. Nucl. Mater. 21, 310 (1967).CrossRefGoogle Scholar
  20. 20.
    P.J. Harrop, N.J.M. Wilkins, and J.N. Wanklyn, Corros. Sci. 7, 289 (1967).CrossRefGoogle Scholar
  21. 21.
    J.W. Mayer, L. Eriksson, and J.A. Davies, Ion Implantation in Semiconductors, Academic Press, New York, 19 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. A. Spitznagel
    • 1
  • L. R. Fleischer
    • 1
  • W. J. Choyke
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations