Radiation Blistering After H+, D+, and He+ Ion Implantation into Surfaces of Stainless Steel, Mo, and Be

  • H. Verbeek
  • W. Eckstein


H+, D+, and He+ ions with energies of 15 and 150 keV were implanted into surfaces of stainless steel, Mo, and Be. The occurrence of blisters has been observed by scanning electron microscopy and by optical interference microscopy.

In all investigated metals severe blistering was observed after He irradiation to fluences above 3 × 1017 ions/cm2.

On H+ and D+ bombarded stainless steel irregular shaped blisters were observed mainly at special sites such as grain boundaries and precipitations. The critical fluence for blister formation by 15 keV D+ ions was in the order of 5 × l018/cm2.

For polycrystalline Mo the shape and the average size of hydrogen blisters depends strongly on the pretreatment of the targets. For annealed targets the blister size is much smaller than for unannealed material. The shape and the critical fluence depend strongly on the orientation of individual grains. The critical fluence, defined as the value at which blisters are first observed in some grains, decreases with increasing current density of the bombarding particles.

On D+ bombarded Be, blisters occurred at fluences below 3 • 1017 ions/cm2.


Scanning Electron Micro High Fluences Stainless Steel Surface Blister Formation Annealed Target 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    M. Kaminsky, Adv. Mass Spectr. 3, 69 (1963).Google Scholar
  2. /2/.
    R.D. Daniels, J.Appl.Phys. 42, 417 (1971).CrossRefGoogle Scholar
  3. /3/.
    W. Bauer, G.I. Thomas, J. Nucl.Mat. 47, 241 (1973).CrossRefGoogle Scholar
  4. /4/.
    W. Primak, J. Luthra, J.Appl.Phys. 37, 2287 (1966).CrossRefGoogle Scholar
  5. /5/a.
    S.K. Das, M. Kaminsky, J.Appl.Phys. 44, 25 (1973).CrossRefGoogle Scholar
  6. /5/b.
    M. Kaminsky, S.K. Das, Rad. Eff. 8, 245 (1973).Google Scholar
  7. /5/c.
    S.K. Das, M. Kaminsky, J.Appl.Phys. 44, 2520 (1973).CrossRefGoogle Scholar
  8. /6/.
    S.K. Erents, G. M. McCracken, Rad. Eff. 18, 191 (1973).CrossRefGoogle Scholar
  9. /7/.
    R. S. Blewer, paper presented at the Int. Conf. on Ion Surf. Interaction, Garching Sept. 72, Rad. Eff. in press.Google Scholar
  10. /8/a.
    R. Behrisch, W. Heiland, Proc. 6th Symp. on Fusion Techn., Aachen 1970, EUR 4593e, p. 461.Google Scholar
  11. /8/b.
    R. Behrisch, Nucl. Fusion 12, 691 (1972).CrossRefGoogle Scholar
  12. /9/.
    R.S. Barnes, D. J. Macey, Proc. Roy. Soc. 275, 47 (1963).CrossRefGoogle Scholar
  13. /10/.
    R.S. Nelson, Phil. Mag. 9, 343 (1964).CrossRefGoogle Scholar
  14. /11/.
    H.K. Birnbaum, C. A. West, Ber. Bunsen Gesellsch. 76, 806 (1972).Google Scholar
  15. /12/.
    E.V. Kornelsen, Rad. Eff. 13, 227 (1972).CrossRefGoogle Scholar
  16. /13/.
    J. Roth, R. Behrisch, B. M. U. Scherzer (this Conference).Google Scholar
  17. /14/a.
    W. Eckstein, H. Verbeek, Report IPP 9/7, June 1972 and Vacuum (in press).Google Scholar
  18. /14/b.
    J. Vac. Sci. Techn. 9, 612 (1972).Google Scholar
  19. /15/a.
    R. Behrisch, Vak. Technik 10, 250(1967)Google Scholar
  20. /15/b.
    B.M. U. Scherzer, Thesis TU München 1969, IPP Report 2/80.Google Scholar
  21. /15/c.
    R. Behrisch, B. M. U. Scherzer, H.Schulze, Rad. Eff. 13, 33 (1972).CrossRefGoogle Scholar
  22. /16/a.
    M. E. Schiøtt, Mat. Fys. Medd.Dan. Vid. Selsk. 35, No. 9 (1966)Google Scholar
  23. /16/b.
    M.E. Schiøtt, Rad.Eff. 6, 107 (1970).CrossRefGoogle Scholar
  24. /17/.
    W. Eckstein, B. M. U. Scherzer, H. Verbeek, Rad.Eff. 18, 135 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • H. Verbeek
    • 1
  • W. Eckstein
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarchingGermany

Personalised recommendations