Advertisement

Blistering of Niobium Due to Low Energy Helium Ion Bombardment Investigated by Rutherford Backscattering

  • J. Roth
  • R. Behrisch
  • B. M. U. Scherzer

Abstract

Radiation damage and blister formation in a Nb single crystal due to room temperature bombardment with 2–4 keV He ions has been investigated by Rutherford backscattering in double aligned technique (<100>/(111) and<111>/<111>) of 150 keV protons. By this technique it is possible to observe in situ the development of blisters. The critical ion dose for blister formation is about 1017 He+ /cm2 increasing with energy. It is higher for He bombardment in aligned than in random directions. The mean thickness of the cover of the blisters increases from 234Å at 2 keV to 420Å at 4 keV He bombardment in random direction. The average blister size as measured in the SEM was 600Å at 2 keV and 1400Å at 4 keV random bombardment. In <100> aligned bombardment it increases by roughly a factor of 2. The results of our backscattering measurements before the appearance of blisters may be interpreted by the assumption that small Helium bubbles are formed at the penetration depth of the He ions. The measured penetration depth is considerably larger than predicted by theory (Schiøftt).

Keywords

Random Direction Rutherford Backscattering Blister Formation Damage Production Random Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    R. Behrisch, Nuclear Fusion 12, 695(1972).CrossRefGoogle Scholar
  2. /2/.
    S. K. Das, Private communication.Google Scholar
  3. /3/.
    J. Stark, G. Wendt, Ann. d. Physik 38, 921 (1912)CrossRefGoogle Scholar
  4. /4/.
    W. Primak, J. Appl. Phys. 34, 3630 (1963)CrossRefGoogle Scholar
  5. /5/.
    M. Kaminsky, Adv. Mass Spectrometry 3, 69 (1964)Google Scholar
  6. /6/.
    M. Kaminsky, S. K. Das, J. Appl. Phys. 44, 25 (1973)CrossRefGoogle Scholar
  7. /7/.
    W. Bauer, G.J. Thomas, J.Nucl. Mat. 47, 241 (1973)CrossRefGoogle Scholar
  8. /8/.
    R.D. Daniels, J. Appl. Phys. 42, 417 (1971)CrossRefGoogle Scholar
  9. /9/.
    S. K. Erents, G. M. McCracken, Rad. Effects 18, 191 (1973)CrossRefGoogle Scholar
  10. /10/.
    R. C. Mikkelson, J.W. Miller, R.E. Holland, D. S. Gemmell, J. Appl. Phys. 44, 935 (1973)CrossRefGoogle Scholar
  11. /11/.
    W. Eckstein, H. VerbeekGoogle Scholar
  12. a).
    W. Eckstein, H. Verbeek Verh. DPG (VI) 8, 439 (1973)Google Scholar
  13. b).
    W. Eckstein, H. Verbeek these conference proceedings.Google Scholar
  14. /12/.
    R. Behrisch, Vak. Technik 10, 250(1967)Google Scholar
  15. /13/.
    B. M. U. Scherzer, Thesis, Technische Universität, München (1969)Google Scholar
  16. /14/.
    H. Schmidl, IPP-Report 9/3 (1971)Google Scholar
  17. /15/.
    R. Behrisch, G. Mühlbauer, B. M. U. Scherzer, J. Phys. E 2, 2, 381 (1969)Google Scholar
  18. /16/.
    E. Bøgh, Can. J. Phys. 46, 653(1968)CrossRefGoogle Scholar
  19. /17/.
    L. C. Northcliffe, R.F. Schilling, Nucl. Data Tables A7, 233 (1970)CrossRefGoogle Scholar
  20. /18/.
    R. Behrisch, B. M. U. Scherzer, Thin Solid Films (in press)Google Scholar
  21. /19/.
    R. Behrisch, B. M. U. Scherzer, H. Schulze, Rad. Effects 13, 33 (1972)CrossRefGoogle Scholar
  22. /20/.
    H. Schiøtt, Mat. Fys. Medd. Dan. Vid.Selsk. 35, no. 9 (1966)Google Scholar
  23. /21/.
    P. Pronko, J. Bottiger, J.A. Davies, J.B. Mitchell, Rad. Effects (in press)Google Scholar
  24. /22/.
    W. Whaling, Handbuch der Physik 34, 193, Springer Verlag, Berlin (1958)Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. Roth
    • 1
  • R. Behrisch
    • 1
  • B. M. U. Scherzer
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarchingGermany

Personalised recommendations