Advertisement

Formation of Interstitial Agglomerates and Gas Bubbles in Cubic Metals Irradiated with 5 keV Argon Ions

  • B. Hertel
  • J. Diehl
  • R. Gotthardt
  • H. Sultze

Abstract

Former transmission electron microscope (TEM) studies /1,2,3/ on Cu and Au foils, which were bombarded with 1 to 5 keV Ar ions, showed that interstitial clusters (in the configuration of Frank dislocation loops) are formed below the bombarded surface in a depth remarkably larger than the calculated random range of Ar ions. This was interpreted by the propagation of focussing replacement collision sequences (r.c.s.) originating near the end of the heavily damaged layer within the random range of the incoming Ar ions. One of the strongest arguments in support of this interpretation was the dependence of the depth distributions of the interstitial agglomerates on the crystallographic orientation of the foil surface.

Keywords

Depth Distribution Dislocation Loop Surface Orientation Stereo Pair Foil Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. / 1/.
    H. Diepers and J. Diehl, phys. stat. sol. 16, K 109 (1966).CrossRefGoogle Scholar
  2. / 2/.
    J. Diehl, H. Diepers and B. Hertel, Can. J. Phys. 46, 647 (1968).CrossRefGoogle Scholar
  3. / 3/.
    H. Diepers, phys. stat. sol. 24, 235 (1967).CrossRefGoogle Scholar
  4. / 4/.
    J.A. Venables and G.J. Thomas, in: Vacancies and Interstitials- in Metals, edt. by A. Seeger et al., North-Holland, Amsterdam, 1970, p. 531.Google Scholar
  5. / 5/.
    J.A. Venables, in: Atomic Collision Phenomena in Solids, edt. by D.W. Palmer et al., North-Holland, Amsterdam, 1970, p. 132.Google Scholar
  6. / 6/.
    B.L. Eyre, J. Phys. F 3, 422 (1973).CrossRefGoogle Scholar
  7. / 7/.
    L. E. Thomas and R. W. Balluffi, Appl. Phys. Lett. 9, 171 (1966).CrossRefGoogle Scholar
  8. / 8/.
    L. E. Thomas, T. Schober and R. W. Balluffi, Rad. Effects 1, 257 (1969).CrossRefGoogle Scholar
  9. / 9/.
    W. Frank and A. Seeger, Rad. Effects 1, 117 (1969).CrossRefGoogle Scholar
  10. / 10/.
    R. Gotthardt, unpublished.Google Scholar
  11. / 11/.
    M. Rühle and M. Wilkens, Proc. 5th Europ. Congr. on Electron Microscopy, The Institute of Physics, London and Bristol, 1972, p. 416.Google Scholar
  12. / 12/.
    R.S. Nelson, Phil. Mag. 8, 693 (1963).CrossRefGoogle Scholar
  13. / 13/.
    G. Düsing and G. Leibfried, phys. stat. sol. 9, 463 (1965).CrossRefGoogle Scholar
  14. / 14/.
    B. Jouffrey, Bull. Soc. Franc. Miner. Crist. 87, 557 (1964).Google Scholar
  15. / 15/.
    M. Weiler and J. Diehl, Proc. 5th Intern. Conf. Internal Friction and Ultrason. Attenuation, in press.Google Scholar
  16. / 16/.
    D. Keil, Dr.rer.nat.-Thesis, Univ. Stuttgart 1973.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • B. Hertel
    • 1
  • J. Diehl
    • 1
  • R. Gotthardt
    • 1
  • H. Sultze
    • 1
  1. 1.Max-Planck-Institut für MetallforschungStuttgartGermany

Personalised recommendations