Lattice Location Studies of 2D and 3He in W

  • S. T. Picraux
  • F. L. Vook


Direct determinations of the lattice locations of implanted hydrogen and helium isotopes in tungsten single crystals have been made for the first time by means of ion channeling and ion induced nuclear reactions« Channeling angular distribution measurements along the <100> axial and {100} and {110} planar directions indicate that the implanted 2D occupies the tetrahedral interstitial site in W. Similar measurements indicate that the implanted 3{He atoms are trapped at lattice vacancies in configurations consisting primarily of three helium atoms trapped at a vacancy with a possible smaller component consisting of two helium atoms trapped at a vacancy. The channeling data agree with independent calculations by Bisson and Wilson of the lattice locations of the He atoms in a vacancy.


Helium Atom Hydrogen Isotope Lattice Location Angular Width Flux Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Switendick, Ber. Bunsenges. Physik. Chem. 76, 535 (1972).Google Scholar
  2. 2.
    R. Frauenfelder, J. Vac. Sci. Technol. 6, 388 (1969).Google Scholar
  3. 3.
    G. E. Moore and F. C. Unterwald, J. Chem. Phys. 40, 2639 (1964). 4. W. J. Arnoult and R. B. McLellan (to he published).CrossRefGoogle Scholar
  4. 5.
    E. V. Kornelson, Rad. Effects 13, 227 (1972).CrossRefGoogle Scholar
  5. 6.
    H. D. Carstanjen and R. Sizmann, Ber. Bunsenges. Physik. Chem. 76, 1223 (1972) andGoogle Scholar
  6. 6a.
    H. D. Carstanjen and R. Sizmann, Phys. Lett. 40A, 93 (1972).Google Scholar
  7. 7.
    P. P. Pronko and J. G. Pronko, Thin Solid Films (to he published Octoher 1973).Google Scholar
  8. 8.
    D. K. Brice (private commtmication), and Rad. Effects 6, 77 (1970).CrossRefGoogle Scholar
  9. 9.
    S. T. Picraux, Rad. Effects 17, 26l (1973).Google Scholar
  10. 10.
    J. L. Yarnell, R. H. Lovberg, and W. R. Stratton, Phys. Rev. 90, 292 (1953).CrossRefGoogle Scholar
  11. 11.
    S. K. Erents and G. M. McCracken, Rad. Effects 18, 191 (1973) and G. M. McCracken (private communication).CrossRefGoogle Scholar
  12. 12.
    J. U. Andersen, O. Andreasen, J A. Davies, and E. Uggerhøj, Rad. Effects 7, 25 (1971).CrossRefGoogle Scholar
  13. 13.
    See, for example, T. Ebisuzaki and M. O’Keeffe, Prog. Solid State Chem. 4, 187 (1967).CrossRefGoogle Scholar
  14. 14.
    C. L. Bisson and W. D. Wilson (this conference, following paper).Google Scholar
  15. 15.
    W. D. Wilson and C. L. Bisson, Rad. Effects (to be published).Google Scholar
  16. 16.
    G. J. Thomas and W. Bauer, Rad. Effects 3/f, 221 (1973) and private communication.Google Scholar
  17. 17.
    E. V. Kornelson (private communication).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • S. T. Picraux
    • 1
  • F. L. Vook
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations