Advertisement

Combined Lattice Location and Hyperfine Field Study of Yb Implanted into Fe

  • R. B. Alexander
  • E. J. Ansaldo
  • B. I. Deutch
  • J. Gellert
  • L. C. Feldman

Abstract

Ion implantation has been extensively used to prepare radioactive sources of impurities in metals for hyperfine interaction studies. However, it has been found that the hyperfine field (hf) at implanted impurities may vary according to the implantation conditions as well as the processing of the host (see, for example, Reis. 1–3). Factors which can influence the measured hf include radiation damage, the concentration and location of the impurity atoms in the host lattice, and their migration or precipitation on annealing. The impurity lattice location (as well as certain types of radiation damage) can be investigated by the technique of ion channeling. In order to understand better the various factors on which the hf may depend, it was decided to make a combined channel-ing-hf study on a suitable system.

Keywords

Impurity Atom Angular Correlation Relaxation Parameter Lattice Location Substitutional Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Deutch and G. M. Heestand, “Angular Correlations in Nuclear Disintegration”, eds, H. van Krugten and B. van Nooijen (Rotterdam University Press, 1971), p. 487.Google Scholar
  2. 2.
    L. C. Feldman, E. N. Kaufmann, D. W. Mingay and W. M. Augustyniak, Phys. Rev. Letto 27, 114–5 (1971).Google Scholar
  3. 3.
    H. de Waard, “Mossbauer Spectroscopy and its Applications” (IAEA, Vienna, 1972), p. 123.Google Scholar
  4. 4.
    J. A. Davies, “European Conference on Ion Implantation” (Peregrinus, Stevenage, England, 1970), p. 172.Google Scholar
  5. 5.
    R. B. Alexander, P.T. Callaghan and J.M. Poate, to “be published in Phys. Rev. B.Google Scholar
  6. 6.
    H. Frauenfelder and R.M. Steffen, “Alpha-, Beta- and Gamma-Ray Spectroscopy”, ed, K. Siegbahn (North-Holland, 1965), Chap. X1XA.Google Scholar
  7. 7.
    A. Abragam and R.V. Pound, Phys. Rev. 92, 943 (1953).CrossRefGoogle Scholar
  8. 8.
    M.E. Caspari, S. Frankel and G.T. Wood, Phys. Rev. 127, 1519 (1962).CrossRefGoogle Scholar
  9. 9.
    V.S. Shirley, “Hyperfine Interactions in Excited Nuclei”, eds. G. Goldring and R. Kalish (Gordon and Breach, 1971), Vol. 4, P. 1255.Google Scholar
  10. 10.
    R.L. Cohen, G.Beyer and B.I. Deutch, (these conference proceedings).Google Scholar
  11. 11.
    P. Inia and H. de Waard, “Angular Correlations in Nuclear Disintegrati on”, eds. H. van Krugten and B. van Nooijen. (Rotterdam University Press, 1971), p. 519.Google Scholar
  12. 12.
    A. Benoit, J. Flouquet and J. Sanchez, to be published.Google Scholar
  13. 13.
    K. Bonde Nielsen and B.I. Deutch, Phys. Lett. 25B, 208 (1967).Google Scholar
  14. 14.
    L. Thome, H.C. Benski and H. Bernas, Phys. Lett. 42A, 327 (1972).Google Scholar
  15. 15.
    P. Abel, M. Bruneaux, C. Cohen, H. Bernas. J. Chaumont and L. Thome, Solid State Comm. 13, 113 (1973) and these conference proceedings.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. B. Alexander
    • 1
    • 3
    • 4
  • E. J. Ansaldo
    • 1
  • B. I. Deutch
    • 1
  • J. Gellert
    • 1
  • L. C. Feldman
    • 2
  1. 1.Institute of PhysicsUniversity of AarhusAarhus CDenmark
  2. 2.Aarhus University and Bell Telephone LaboratoriesMurray HillUSA
  3. 3.Clarendon LaboratoryOxfordUK
  4. 4.Nuclear Physics DivisionA.E.R.E.HarwellUK

Personalised recommendations