Ion Beam Studies of Metal-Metal and Metal-Semiconductor Reactions

  • J. W. Mayer


Backscattering techniques allow determination of elemental composition as a function of depth with typical values of depth resolution of 100 to 300Å. The technique is ideally suited to measurements in thin film systems of thicknesses of several thousand Angstroms and has provided a basis for examination of thin film interactions. This presentation is intended as an introduction to the papers presented in this session of the conference. These papers represent examples of the type of studies carried out in this field: interdiffusion and mixing between thin metal films, and reaction kinetics and silicide formation in systems composed of metal films deposited on Si or SiO2. These studies involve solid-solid diffusion and reactions since the process temperatures are below the eutectic. Although backscattering techniques provide depth-microscopy, supplemental measurements are often required to establish lateral uniformity and the relative importance of grain boundary and bulk diffusion.


Compound Layer Bulk Diffusion Depth Resolution Thin Metal Film Lateral Uniformity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of the International Conference on Ion Beam Surface Layer, Yorktown Heights, June 1973.Google Scholar
  2. 2.
    M-A. Nicolet, J.W. Mayer and I.V. Mitchell, Science 177, 841 (1972).CrossRefGoogle Scholar
  3. 3.
    A. Turos and Z. Wilhelmi, Nukleonika 13, 975 (1968) andGoogle Scholar
  4. 3a.
    A. Turos and Z. Wilhelmi, Nukleonika 14, 320 (1969).Google Scholar
  5. 4.
    W.K. Chu, J.W. Mayer, M-A. Nicolet, T.M. Buck, G. Amsel and F. Eisen, Thin Solid Films 17, 1 (1973).CrossRefGoogle Scholar
  6. 5.
    A. Turos and J.W. Mayer, Thin Solid Films 19, 1 (1973).CrossRefGoogle Scholar
  7. 6.
    J.A. Borders and J.N. Sweet, these conference proceedings.Google Scholar
  8. 7.
    K.N. Tu and B.S. Berry, J. Appl. Phys. 43, 3283 (1972).CrossRefGoogle Scholar
  9. 8.
    H. Krautle, W.K. Chu, M-A. Nicolet, J.W. Mayer and K.N. Tu, these conference proceedings.Google Scholar
  10. 9.
    J.W. Mayer and K.N. Tu, J. Vac. Sci. and Tech. (to be published).Google Scholar
  11. 10.
    J.F. Ziegler, J.W. Mayer, C.J. Kircher and K.N. Tu, J. Appl. Phys. 44, 3851 (1973).CrossRefGoogle Scholar
  12. 11.
    W.J. DeBonte, J.M. Poate, C.M. Melliar-Smith and R.A. Levesque, these conference proceedings.Google Scholar
  13. 12.
    J.E.E. Baglin, V. Brusic, E. Alessandrini and J.F. Ziegler, these conference proceedings.Google Scholar
  14. 13.
    J.A. Borders, in Ref. 1.Google Scholar
  15. 14.
    S.U. Compisano, G. Foti, F. Grasso, J.W. Mayer and E. Rimini, these conference proceedings.Google Scholar
  16. 15.
    S.S. Lau and D. Sigurd, Phys. Stat Solidi (submitted).Google Scholar
  17. 16.
    T. Narusawa, S. Komiya and A. Hiraki, Appl. Phys. Lett. 21, 272 (1972).CrossRefGoogle Scholar
  18. 17.
    H. Krautle, W.K. Chu and K.N. Tu (unpublished data on NiSi2).Google Scholar
  19. 18.
    D. Sigurd, R.W. Bower, W.F. van der Weg and J.W. Mayer in Ref. 1.Google Scholar
  20. 19.
    D. Sigurd, G. Ottaviani, V. Marrello, J.W. Mayer and J.O. McCaldin, J. Non-Cryst. Solids 12, 135 (1973).CrossRefGoogle Scholar
  21. 20.
    G.A. Hutchins and A. Shepala, Thin Solid Films (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • J. W. Mayer
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations