On Silicon Amorphisation During Different Mass Ions Implantation

  • E. C. Baranova
  • V. M. Gusev
  • Yu. V. Martynenko
  • C. V. Starinin
  • I. B. Hailbullin
Part of the The IBM Research Symposia Series book series (IRSS)


Amorphisation of silico single crystals during different mass 80 keV ions bombardment (B+, C+, Ne+, Ar, Sb+) has been studied by means of three independent techniques, (a) IR absorption at I,8 μ wavelength (divacancy absorption), (b) IR reflection near a fundamental absorption edge, and (c) electron microscopy and fast electron diffraction. Irradiation was carried out at room temperature. From the analysis of data obtained it can be concluded that two types of disordered regions arise during ion bombardment, (a) amorphous regions (A.R.) and (b) disordered, but still processing crystalline structure regions; which we call the crystalline disordered regions (CDR). In CDR the defect concentration is so high that divacancies do not appear. The defect concentration in CDR gradually increases with the increasing of irradiation dose. When; the defect concentration achieves some critical value CDR transforms sharply to an amorphous state. Such amorphisation mechanism prevails for light ions. For heavy ions (Sb+) amorphisation arises mainly from a one-step AR formation. The proposed model of amorphisation gives the qualitative explanation of dose dependence of refractive index for different ions.


Radiation Damage Amorphous State Dose Dependence Defect Concentration Fundamental Absorption Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. J. R. Parsons, Phil. Mag. 12, 1159 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. S. Nelson, D. J. Masey, Phil. Mag. 17, (1968).Google Scholar
  3. 3.
    J. W. Mayer, IEEE Trans. N, 15, 10 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. V. Martynenko, F.T.T. II, 1968 (1969).Google Scholar
  5. 5.
    F. F. Morehead, J. R. and B. L. Crowder, Rad. Eff. 6, 27 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    A. T. Gerasimov, E. I. Zorin, P. V. Pavolv, D. I. Tetelbaum, DAN USSR 192, 324 (1970).Google Scholar
  7. 7.
    M. L. Swanson, J. R. Parsons, C. W. Hoelke, Rad. Eff. 9, 249 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    L. T. Chadderton, Rad. Eff. 82, (1971).Google Scholar
  9. 9.
    L. T. Chadderton and F. H. Eisen, Rad. Eff. 7 129 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    A. K. Semenyuk, V. I. Khivrich, I. D. Konozenko, Phys. St. Sol. (a) 7, 51 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    V. M. Gusev, K. P. Busharov, S. M. Naftulin, A. M. Pronitshev, PTF N4, 19 (1969).Google Scholar
  12. 12.
    V. M. Gusev, Yu. V. Martynenko, C. V. Starinin, Atomic Collision Phenomena in Solids, Proc. of an Intern. Conf., Sussex, Britain, England, p. 162 (1969).Google Scholar
  13. 13.
    V. M. Gusev, L. M. Strelzov, C. V. Starinin, I. B. Hailbullin, ETR 6, 1191 (1972).Google Scholar
  14. 14.
    E. K. Baranova, FTR 6, 380 (1972).Google Scholar
  15. 15.
    H. J. Stein, F. Vook, J. A. Borders, Appl. Phys. Lett 14, 328 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    B. L. Crowder, R. S. Title, M. H. Brodsky, G. D. Petitt, Appl. Phys. Lett, 16, 205 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    H. Pulker, E. Ritter, Optic 21, 21 (1964).Google Scholar
  18. 18.
    T. C. McGill, S. L. Kurtin, G. A. Schifrin, J. Appl. Phys. 41, 246 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. C. Baranova
    • 1
  • V. M. Gusev
    • 1
  • Yu. V. Martynenko
    • 1
  • C. V. Starinin
    • 1
  • I. B. Hailbullin
    • 1
  1. 1.Kurtchatov Atomic Energy InstituteMoscowUSSR

Personalised recommendations