Advertisement

Properties of Tellurium Implanted Gallium Arsenide

  • F. H. Eisen
  • J. S. Harris
  • B. Welch
  • R. D. Pashley
  • D. Sigurd
  • J. W. Mayer
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

Hall effect and Rutherford backscattering measurements were used to study the electrical properties, the lattice location, and the resulting lattice damage of tellurium implanted in GaAs. Ion implantation was performed with substrates held at elevated temperatures (150°–350°C) to avoid the production of an amorphous layer. After implantation, a protective coating of Si3N4. was reactively sputtered on all samples to keep the GaAs from disassociating during anneal. The best results were obtained with samples annealed at 900°C. Up to 50% electrical activity was attained with mobilities consistent with bulk values. Differential Hall effect measurements performed on a sample implanted with 1 × 1014 Te/cm2 indicated that the peak electron concentration was about 8 × 1018 electrons/cm3 and that no movement of the Te profile had occurred during anneal. Such peak electron levels are in accordance with the maximum value of the electron concentration attained in tellurium doped GaAs (~1019 electrons/cm3).

Keywords

Gallium Arsenide Amorphous Layer GaAs Sample Si3N4 Layer High Electrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Hunsperger and O. J. Marsh, Rad. Effects, 6, 236 (1970)Google Scholar
  2. J. D. Sansberry and J. F. Gibbons, Rad. Effects, 6, 269 (1970)ADSCrossRefGoogle Scholar
  3. J. S. Harris in Ion Implantation in Semiconductors, edited by I. Ruge and J. Graul (Springer-Verlag, Berlin, 1971), p. 157CrossRefGoogle Scholar
  4. V. M. Zelevinskaya and G. A. Kachurin, Soviet-Phys. Semicond., 5, 1455 (1972).Google Scholar
  5. 2.
    A. G. Foyt, J. P. Donnelly and W. T. Lindley, Appl. Phys. Letters, 14, 372 (1969).ADSCrossRefGoogle Scholar
  6. 3.
    C. J. Forsch and L. Derick, J. El. Chem. Soc., 104, 547 (1957)CrossRefGoogle Scholar
  7. W. K. Chu, B. L. Crowder, J. W. Mayer and J. F. Ziegler, this conference.Google Scholar
  8. 4.
    J. S. Harris, F. H. Eisen, B. Welch, J. D. Haskell, R. D. Pashley and J. W. Mayer, Appl. Phys. Letters, 21, 601 (1972).ADSCrossRefGoogle Scholar
  9. 5.
    J. W. Mayer, Rad. Effects, 12, 183 (1972).CrossRefGoogle Scholar
  10. 6.
    L. J. van der Pauw, Philips Res. Repts., 13, 1 (1958).Google Scholar
  11. 7.
    J. S. Harris, Y. Nannichi, G. L. Pearson, and G. F. Day, J. Appl. Phys., 40, 4575 (1969).ADSCrossRefGoogle Scholar
  12. 8.
    R. D. Pashley, Rad. Effects, 11, 1 (1971).CrossRefGoogle Scholar
  13. 9.
    J. W. Mayer, L. Eriksson and J. A. Davies, Ion Implantation in Semiconductors (Academic Press, New York, 1970).Google Scholar
  14. 10.
    J. L. Whitton and G. R. Vellavance, Rad. Effects, 9, 127 (1971).CrossRefGoogle Scholar
  15. 11.
    G. Backenstoss, Phys. Rev., 108, 1416 (1957)ADSCrossRefGoogle Scholar
  16. O. J. Marsh, J. W. Mayer, G. A. Shifrin and D. Jamba, Appl. Phys. Letters, 11 92 (1967).ADSCrossRefGoogle Scholar
  17. 12.
    I. V. Mitchell, J. W. Mayer, J. K. Kung and W. G. Spitzer, J. Appl. Phys., 42, 3982 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • F. H. Eisen
    • 1
  • J. S. Harris
    • 1
  • B. Welch
    • 1
  • R. D. Pashley
    • 2
  • D. Sigurd
    • 2
  • J. W. Mayer
    • 2
  1. 1.Science Center Rockwell InternationalThousand OaksUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations