Refractive Index Profiles Produced in Silica Glass by Ion Implantations

  • A. R. Bayley
  • P. D. Townsend
Part of the The IBM Research Symposia Series book series (IRSS)


Refractive index profiles produced by 300 kV Ne, Ar and Kr and 20 kV He irradiation in silica glass are presented. These are obtained by a technique involving a series of ellipsometric measurements taken at small depth intervals through the implanted region, and computer analysis transforms the data thus obtained into a complex-refractive-index profile. The major effect can be attributed to the compaction of the silica lattice, but the nature of a shallow peak at the surface is unknown. Annealing data qualitatively confirm the role of radiation damage. Backscattering studies are used to determine the implant distribution and show that Bi may be a suitable species for producing genuine implantation refractive index changes since no significant migration of the Bi occurs at temperatures sufficiently high to anneal the radiation damage.


Radiation Damage Silica Glass Refractive Index Change Refractive Index Profile Ellipsometric Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. R. Schineller, R. P. Flam and D. W. Wilmot, J. Opt. Soc. Amer. 58, 1171 (1968).ADSCrossRefGoogle Scholar
  2. [2]
    J. E. Goell, R. D. Standley, W. M. Gibson and J. W. Rodgers, Appl. Phys. Letts. 21, 72 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    E. Gamire, H. Stoll, A. Yariv and R. G. Hunsperger, Appl. Phys. Letts. 21, 87 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    R. L. Mines and R. Arndt, Phys. Rev. 119, 623 (1969).Google Scholar
  5. [5]
    W. Primak, Phys. Rev. 110, 1240 (1958).ADSCrossRefGoogle Scholar
  6. [6]
    W. Primak, J. Appl. Phys. 43, 2745 (1972)ADSCrossRefGoogle Scholar
  7. [7]
    A. R. Bayly (to be published in Radiation Effects).Google Scholar
  8. [8]
    A. R. Bayly and P. D. Townsend (to be sumbitted to J. Phys.: D).Google Scholar
  9. [9]
    J. H. Freeman, Proc. European Conf. on Ion Implantation (Reading, 1970) p. 1.Google Scholar
  10. 10.
    K. B. Winterbon, P. Sigmund and J. B. Sanders, Mat. Fys. Medd. 37, 14 (1970).Google Scholar
  11. [11]
    J. Lindhard, M. Scharff and H. E. Schlott, Mat. Fys. Medd. 33, 14 (1963).Google Scholar
  12. [12]
    M. Born, “Atomic Physics” (Blackies, London, 1962) p. 251.Google Scholar
  13. [13]
    R. D. Standley, W. M. Gibson and J. W. Rodgers, App. Opt., 11, 1313 (1972).ADSCrossRefGoogle Scholar
  14. [14]
    D. Brice, Reported at the Int. Conf. on Ion Implantation in Semiconductors and Other Materials, Dec. 1972.Google Scholar
  15. [15]
    E. W. J. Mitchell and E. G. S. Paige, Phil. Mag. 1, 1085 (1956).ADSCrossRefGoogle Scholar
  16. [16]
    Hj. Matzke, Phys. Stat. Sol. 18, 285 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • A. R. Bayley
    • 1
  • P. D. Townsend
    • 1
  1. 1.Department of PhysicsUniversity of SussexUK

Personalised recommendations