Advertisement

Electrical and Structural Changes in Ion-Bombarded TiO2

(Studies on bombardment-enhanced conductivity — II)
  • Thomas Parker
  • Roger Kelly
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

A study of the electrical and structural changes occurring in ion-bombarded TiO2 has been undertaken. The conductivity induced by 30-keV Kr was shown to develop in three fairly distinct regions:
  • Region I: Incubation period lasting to 6x1015 ions/cm2, during which the conductivity remains near the initial value of about 1.5x10-7 ohm-1.

  • Region II: Rapid increase of conductivity to about 5×10-5 ohm-1 at 8x1016 ions/cm2.

  • Region III: Slow approach of the conductivity to a saturation level of about 1×10-4 ohm-1 for doses beyond 8x1016 ions/cm2.

The concurrent structural changes were determined using reflection electron diffraction, and revealed the amorphization of the initially rutile-type TiO2 (Region I), the growth of small regions of Ti2O3 (Region II), and the complete transformation of the surface to polycrystalline Ti2O3 (Region III).

The increased conductivity may be adequately explained in terms of the formation of Ti2O3. Thus, assuming that the altered layer extends to a depth equal to twice the mean projected range of the bombarding species (~ 230 Å), the value 1×10-4 ohm-1 corresponds to 1x101 ohm-1cm-1. This compares well with the range of values 1×101 to l×102 ohm-lcm-1 as given elsewhere for Ti2O3. The mechanism responsible for the formation of Ti2O3 cannot be specified with certainty, though it is shown that thermal-spike vaporization is inadequate. In effect, the reaction 2TiO2(s) = Ti2O3(s) + ½O2(g) has too low an oxygen pressure to occur to a significant extent at the surface near an impact. This leaves internal precipitation of O2 or preferential oxygen sputtering as possible mechanisms.

Keywords

Oxygen Loss Total Binding Energy Thermal Spike Internal Precipitation Altered Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Harrop, M.J.M. Uilkins, and J.N. Wanklyn, Harwell (U.K.) Report AERE-R 5279 (1966).Google Scholar
  2. 2.
    H.M. Naguib and R. Kelly, J. Phys. Chem. Sol., 33, 1751 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    L.E. Collins, P.A. O’Connell, J.G. Perkins, F.R. Pontet, and P.T. Stroud, Nucl. Instr. Meth., 92, 455 (1971).CrossRefGoogle Scholar
  4. 4.
    H. Krautle and S. Kalbitzer, Proc. Intern. Conf. on Ion Implantation in Semiconductors and other Mat. (Yorktown Heights, N.Y., 1972) (this volume).Google Scholar
  5. 5.
    D.B. Rogers, R.D. Shannon, A.W. Sleight, and J.L. Gillson, Inorg. Chem., 8, 841 (1969).CrossRefGoogle Scholar
  6. 6.
    J. Feinleib and W. Paul, Phys. Rev., 155, 841 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    P.G. Wahlbeck and P.W. Gilles, J. Am. Cer. Soc., 49, 180 (1966).CrossRefGoogle Scholar
  8. 8.
    J.S. Anderson and A.S. Khan, J. Less-Common Metals, 22, 219 (1970).CrossRefGoogle Scholar
  9. 9.
    O. Kubaschewski, E.L. Evans, and C.B. Alcock, Metallurgical Thermochemistry (Pergamon Press, Oxford, 1967), p. 303.Google Scholar
  10. 10.
    L.B. Valdes, Proc. I.R.E., 42, 420 (1954).CrossRefGoogle Scholar
  11. 11.
    D.C. Cronemeyer, Phys. Rev., 87, 876 (1952).ADSCrossRefGoogle Scholar
  12. 12.
    W.S. Johnson and J.F. Gibbons, Projected Range Statistics in Semiconductors (Stanford University Bookstore, Stanford, 1969).Google Scholar
  13. 13.
    C. Jech and R. Kelly, J. Phys. Chem. Sol., 30 465 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    S. Andersson, B. Collen, G. Kruuse, U. Kuylenstierna, A. Magneli, H. Pestmalis, and S. Asbrink, Acta Chem. Scand., 11, 1653 (1957).CrossRefGoogle Scholar
  15. 15.
    F.J. Morin, Phys. Rev. Lett., 3, 34 (1959).ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawakubo, T. Yanagi, and S. Nomura, J. Phys. Soc. Japan, 15, 2102 (1960).ADSCrossRefGoogle Scholar
  17. 17.
    J. Yahia and H.P.R. Frederikse, Phys. Rev., 123, 1257 (1961).ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Honig and T.B. Reed, Phys. Rev., 174, 1020 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    R. Kelly, Can. J. Phys., 46, 473 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    R. Kelly, N.Q. Lam, O.K. Murti, H.M. Naguib, and T.E. Parker, Proc. Intern. Summer School on Physics of Ionized Gases (Split, Yugoslavia, 1972) (in press).Google Scholar
  21. 21.
    M.D. Matthews, Rad. Effects, 11, 167 (1971).CrossRefGoogle Scholar
  22. 22.
    A. van den Bosch, J. Phys. Chem. Sol., 25, 1293 (1964).CrossRefGoogle Scholar
  23. 23.
    D.B. Carroll and H.K. Birnbaum, J. Appl. Phys., 36, 2658 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    E. Gillam, J. Phys. Chem. Sol., 11, 55 (1959).ADSCrossRefGoogle Scholar
  25. 25.
    R.S. Nelson, Phil. Mag., 11, 291 (1965).ADSCrossRefGoogle Scholar
  26. 26.
    R. Kelly and N.Q. Lam, Rai. Effects (in press).Google Scholar
  27. 27.
    P. Kofstad, Non-stoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972), p. 137.Google Scholar
  28. 28.
    K.B. Winterbon, P. Sigmund, and J.B. Sanders, Kgl. Danske Vid. Selsk. Mat. Fys. Medd., 37, No. 14 (1970).Google Scholar
  29. 29.
    R. Kelly, to be publishedGoogle Scholar
  30. 30.
    M.W. Thompson and R.S. Nelson, Phil. Mag., 7, 2015 (1962).ADSCrossRefGoogle Scholar
  31. 31.
    S. Dushman and J.M. Lafferty, Scientific Foundations of Vacuum Technique (Wiley, New York, 1962), p. 14.Google Scholar
  32. 32.
    P. Sigmund, G.P. Scheidler, and G. Roth, Proc. Conf. on Solid-State Research with Accelerators (Brookhaven Nat. Lab., Upton, N.Y., 1967).Google Scholar
  33. 33.
    K.B. Winterbon, Chalk River (Canada) Report AECL-3194 (1968).Google Scholar
  34. 34.
    R. Kelly and H.M. Naguib, Proc. Intern. Conf. on Atomic Collision Phenomena in Solids (Brighton, U.K., 1969), p. 172.Google Scholar
  35. 35.
    W.A. Chupka, J. Berkowitz, and M.G. Inghram, J. Chem. Phys., 26, 1207 (1957).ADSCrossRefGoogle Scholar
  36. 36.
    J. Drowart, G. DeMaria, R.P. Burns, and M.G. Inghram, J. Chem. Phys., 32, 1366 (1960).ADSCrossRefGoogle Scholar
  37. 37.
    C.A. Alexander, J.S. Ogden, and A. Levy, J. Chem. Phys., 39, 3057 (1963).ADSCrossRefGoogle Scholar
  38. 38.
    J. Berkowitz, W.A. Chupka, and M.G. Inghram, J. Phys. Chem. 61, 1569 (1957).CrossRefGoogle Scholar
  39. 39.
    R. J. Ackermann, P.W. Gilles, and R.J. Thorn, J. Chem. Phys., 25, 1089 (1956).ADSCrossRefGoogle Scholar
  40. 40.
    F T Colin, J. Drowart, and G. Verhaegen, Trans. Faraday Soc., 61, 1364 (1965).CrossRefGoogle Scholar
  41. 41.
    O. Ackermann and E.G. Rauh, J. Phys. Chem., 67, 2596 (1963).CrossRefGoogle Scholar
  42. 42.
    S.A. Shchukarev, G.A. Semenov, and K.E. Frantseva, Russ. J. Inorg. Chem., 4, 1217 (1959).Google Scholar
  43. 43.
    N. Kimizuka, R. Saeki, and M. Näkahira, Mat. Res. Bull., 5, 403 (1970).CrossRefGoogle Scholar
  44. 44.
    P.E. Blackburn, M. Hoch, and H.L. Johnston, J. Phys. Chem., 62, 769 (1958).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Thomas Parker
    • 1
  • Roger Kelly
    • 1
  1. 1.Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations