Lateral Stress Measurements in Ion-Implanted Metals and Insulators

  • E. P. EerNisse
Part of the The IBM Research Symposia Series book series (IRSS)


The cantilever beam technique has been used for a brief survey of lateral stress in ion-implanted insulators and metals. The lateral stress results for fused silica bombarded with H and He ions compare favorably with other workers’ data obtained with photoelastic measurements. The lateral stress versus fluence curves for H, He, and O ion implants into Ag-phosphate dosimetry glass show structure which can be identified as arising from the superposition of lateral stress introduced by electronic energy deposition and lateral stress introduced by atomic collision energy deposition. These results are the first that use one physical property in the same material to measure the effects of both the energy into electronic processes and the energy into atomic collision processes.


Cantilever Beam Lateral Stress Atomic Collision Integrate Stress Light Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. EerNisse, Appl. Phys. Lett. 18, 581 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    R. L. Meek W. M. Gibson and J. P. F. Sellschop Appl. Phys. Lett. 18, 535 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    J. C. North and R. Wolfe (this conference Paper No. VIII).Google Scholar
  4. 4.
    E. P. EerNisse, J. Appl. Phys. 43, 1330 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    R. D. Standley, W. M. Gibson and J. W. Rodgers Appl. Opt., 11, 1313 (1972).CrossRefGoogle Scholar
  6. 6.
    G. W. Arnold and F. L. Vook, Rad. Effects 14, 157 (1972).CrossRefGoogle Scholar
  7. 7.
    W. Beezhold and E. P. EerNlsse Appl. Phys. Lett. 21, 592 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Brice, Rad. Effects 6, 77 (1970)Google Scholar
  9. Rad. Effects 11, 227 (1971)CrossRefGoogle Scholar
  10. 9.
    D. K. Brice (this conference. Paper No. III.1).Google Scholar
  11. 10.
    Handbook of Tables for Applied Engineering Science (Chemical Rubber Co., Cleveland, 1970), p. 12.Google Scholar
  12. 11.
    W. Primak, Surface Sci. 16, 398 (1969).ADSCrossRefGoogle Scholar
  13. 12.
    R. S. Nelson, D. J. Mazey, and J. A. Hudson, J. Nucl. Materials 37, 1 (1970).ADSCrossRefGoogle Scholar
  14. 13.
    R. S. Bleuer and J. K. Maurin, J. Nucl. Materials 44, 260 (1972).ADSCrossRefGoogle Scholar
  15. 14.
    H. G. Cooper, J. S. Koehler, and J. W. Marx, Phys. Rev. 97 599 (1955).ADSCrossRefGoogle Scholar
  16. 15.
    R. O. Simmons and R. W. Balluffi, Phys. Rev. 109, 1142 (1958)ADSCrossRefGoogle Scholar
  17. 16.
    R. Vook and C. Wert, Phys. Rev. 109, 1529 (1958).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. P. EerNisse
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations