Advertisement

Ion Implantation Effects in Magnetic Bubble Garnets

  • J. C. North
  • R. Wolfe
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

Ion implantation has been used to change the magnetic properties of magnetic bubble garnets. The damage produced by implantation causes lattice expansion, which places the implanted material in lateral compression. This effect allows the easy axis of magnetization within the implanted layer to be placed either perpendicular or parallel to the surface depending upon the sign of the magnetostriction constant. The effects of a thin implanted layer having planar magnetization on the underlying magnetic bubbles are described. Applications include the suppression of hard bubbles, implanted rails for electric current access propagation and implanted drive patterns for magnetic field access propagation. The increases in lattice parameter determined from X-ray diffraction measurements and the doses required for hard bubble suppression correlate with the theoretical nuclear stopping powers for the ions used.

Keywords

Domain Wall Easy Axis Bias Field Lattice Parameter Increase Magnetostriction Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Bobeck, R. F. Fischer, A. J. Perneski, J. P. Remeika, L. G. VanUitert, IEEE Transactions on Magnetics MAG-5, 544 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    A. H. Bobeck and H. E. D. Scovil, Scientific American 224, 78 (1971).Google Scholar
  3. 3.
    R. Wolfe, J. C. North, R. L. Barns, M. Robinson, and H. J. Levinstein, Appl. Phys. Lett. 19, 298 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    W. L. Brown, II International Conf. on Ion Implantation in Semiconductors, Ed. by I. Ruge and J. Graul, Springer-Verlag, Berlin, Heidelberg, New York, 1971, p. 430.Google Scholar
  5. 5.
    R. Wolfe and J. C. North, Bell Syst. Tech. J. 51, 14–36 (1972).Google Scholar
  6. 6.
    Proc. of 18th Annual Conf. on Magnetism and Magnetic Materials, to be published, AIP Conference Proceedings, 10, (1973).Google Scholar
  7. 7.
    R. Wolfe, J. C. North, W. A. Johnson, R. R. Spiwak, L. J. Varnerin, and R. F. Fischer, Ref. 6.Google Scholar
  8. 8.
    D. H. Smith and J. C. North, Ref. 6.Google Scholar
  9. 9.
    H. E. Schiott, Mat. Fys. Medd. Dan. Vid. Selsk. 35, No. 9 (1966).Google Scholar
  10. 10.
    G. P. Vella-Coleiro, Ref. 6.Google Scholar
  11. 11.
    W. J. Tabor, A. H. Bobeck, G. P. Vella-Coleiro, and A. Rosencwaig, Bell Syst. Tech. J. 51 1427 (1972).Google Scholar
  12. 12.
    A. P. Malozemoff, Appl. Phys. Lett. 21, 149 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    A. Rosencwaig, Bell Syst. Tech. J. 51, 1440 (1972).Google Scholar
  14. 14.
    A. H. Bobeck, S. L. Blank, and H. J. Levinstein, Bell Syst. Tech. J. 51, 1431 (1972).Google Scholar
  15. 15.
    J. A. Copeland, J. Electr. Mat. 1, 420 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    R. M. Goldstein and J. A. Copeland, Ref. 6.Google Scholar
  17. 17.
    J. M. Dishman, R. D. Pierce and B. J. Roman, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. C. North
    • 1
  • R. Wolfe
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations