An Exacting Test of the Channeling Technique for Atom Location: Br Implanted into Fe

  • R. B. Alexander
  • P. T. Callaghan
  • J. M. Poate
Part of the The IBM Research Symposia Series book series (IRSS)


The channeling and backscattering of 14N and 4He ions have been used in an extensive experiment to determine the location of Br implanted into Fe single crystals. Complete angular scans have been carried out across the three major crystal axes and the three major planes. For the {211} plane a triple peak is observed in the Br yield curve. This triple peak, and a peak observed in the {100} planar scan, indicate that a substantial fraction of the Br atoms occupy one of three possible interstitial sites of low symmetry. Theoretical calculations of angular yield curves, using both Monte Carlo computer simulations and an analytical model, enable a quantitative interpretation to be made. Good agreement with the data is obtained for a distribution of 60% of the Br in one of the interstitial sites and the remaining 40% substitutional. The apparent enhanced diffusion of 14N (used as an analyzing beam) in Fe is also reported.


Yield Curve Interstitial Site Planar Channel Angular Scan Triple Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Bourgoin and J. W. Corbett, Phys. Lett. 38A, 135 (1972).ADSGoogle Scholar
  2. 2.
    R. B. Alexander, G. Dearnaley, D. V. Morgan, J. M. Poate and D. Van Vliet, Proc. European Conf. on Ion Implantation (Peregrinus, Stevenage, England, 1970) 181.Google Scholar
  3. 3.
    R. B. Alexander, UKAEA Report No. AERE — R6849 (1971).Google Scholar
  4. 4.
    J, U. Andersen, O. Andreasen, J. A. Davies and E. Uggerhøj, Rad. Effects 7, 25 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    B. Domeij, G. Fladda and N. G. E. Johansson, Rad. Effects 6, 155 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    J. U. Andersen, E. Laegsgaard and L. C. Feldman, Rad. Effects 12, 219 (1972).CrossRefGoogle Scholar
  7. 7.
    L. C. Feldman, E. N. Kaufmann, J. M. Poate and W. M. Augustyniak, this conference.Google Scholar
  8. 8.
    R. B. Alexander and J. M. Poate, Rad. Effects 12, 211 (1972).CrossRefGoogle Scholar
  9. 9.
    M. A. Kumakhov, Rad. Effect 15, 85 (1972).CrossRefGoogle Scholar
  10. 10.
    D. V. Morgan and D. Van Vliet, Rad. Effects 12, 203 (1972).CrossRefGoogle Scholar
  11. 11.
    R. A. Boie and H. P. Lie, to be published.Google Scholar
  12. 12.
    J. A. Davies and P. Jespersgaard, Can. J. Phys. 44, 1631 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Davies, L. Ericksson and J. L. Whitton, Can. J. Phys. 46, 573 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    C. A. Wert, J. Appl. Phys. 21, 1196 (1950).ADSCrossRefGoogle Scholar
  15. 15.
    J. O. McCaldin, Progr. Solid State Chem. 2, 9 (1965).CrossRefGoogle Scholar
  16. 16.
    J. Lindhard, Mat.-Fys. Medd. Dan. Vid. Selsk. 34, No. 14 (1965)Google Scholar
  17. 17.
    J. U. Andersen, Mat.-Fys. Medd. Dan. Vid. Selsk. 36, No. 7 (1967).Google Scholar
  18. 18.
    See, for example, P. A. Thackery and R. S. Nelson, Phil. Mag. 19, 169 (1969)ADSCrossRefGoogle Scholar
  19. H. de Waard, Mössbauer Spectroscopy and its Applications (IAEA, Vienna, 1972), p 123 and private communication.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • R. B. Alexander
    • 1
    • 2
  • P. T. Callaghan
    • 1
  • J. M. Poate
    • 3
  1. 1.Clarendon LaboratoryOxfordUK
  2. 2.A.E.R.E.HarwellUK
  3. 3.Bell LaboratoriesMurray HillUSA

Personalised recommendations