Implantation and Diffusion of Cu in Be

  • S. M. Myers
  • W. Beezhold
  • S. T. Picraux
Part of the The IBM Research Symposia Series book series (IRSS)


The implantation and diffusion of Cu in single-crystal Be has been studied. Backscattering of 2 MeV He+ ions was used to determine the concentration-versus-depth profile to ≈ 2 µm with a resolution of ≈ 300 Å. Room temperature implantations were made 8° from the C and A crystalline axes respectively, at 100 keV incident energy. Implantation fluences of 4–5 × 1016 Cu/cm2 were used throughout, except for one lower fluence ≈ 7 × 1015/cm2. The position (900 ± 100) Å and width (850 ± 100) Å of the peak in the Cu profile agree fairly well with the LSS theory. An extended tail at greater depths also was present, however, suggesting enhanced diffusion during the room temperature implantation. Isochronal anneals between 400 and 650° C showed a strongly temperature-dependent diffusion rate above approximately 550° C, with a much weaker temperature dependence below 550° C. The existence of such a low temperature region is again suggestive of damage-enhanced diffusion. A series of isothermal anneals at 595° C demonstrated that the penetration depth is proportional to the square root of the total anneal time, as expected from the diffusion equation, and showed no evidence of Cu being trapped near the surface. The diffusion constants DC and DAfor the C and A axes, respectively, are different, with DC/DA = 0.6 ± 0.1 at 595° C. Published data for autodiffusion in Be give DC/DA = 0.4 at 595° C, whereas from the model of LeClaire this ratio is expected to be larger for autodiffusion than for Group IB metals in Be. An even larger inconsistency has previously been reported for diffusion of Ag in Be for which DC/DA= 2.3 at 595° C.


Isochronal Anneal Lower Fluence Energy Loss Rate Diffusion Result Extended Tail 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Naik, J. M. Dupouy and Y. Adda, Mémoires Scientifiques Rev. Metallurg. 63, 88 (1966).Google Scholar
  2. 2.
    J. M. Bupouy, J. Mathie and Y. Adda, Mémoires Scientifiques Rev. Metallurg. 63, 481 (1966).Google Scholar
  3. 3.
    A. D. LeClaire, Phil. Mag. 7, 141(1962).ADSCrossRefGoogle Scholar
  4. 4.
    Examples of such discrepancies are given in Ref. 5.Google Scholar
  5. 5.
    G. M. Hood, Phil. Mag. 21, 305 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    G. M. Hood and R. J. Schultz, Phil. Mag. 23, 1479 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    G. M. Hood and R. J. Schultz, Phys. Rev. B 4, 2339 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    See, for example, J. W. Mayer, I. V. Mitchell and M.-A. Nicolet, Proc. II Intl. Conf. on Ion Implantation in Semiconductors, edited by I. Ruge and J. Graul (Springer-Verlag, Berlin, 1971), p. 274.CrossRefGoogle Scholar
  9. 9.
    R. F. Sippel, Phys. Rev. 115, 1441 (1959).ADSCrossRefGoogle Scholar
  10. 10.
    J. Lindhard, M. Scharff and H. E. Schiott, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14 (1963).Google Scholar
  11. 11.
    See, for example. S. T. Picraux and F. L. Vook, Appl. Phys. Letters 18, 191 (1971)ADSCrossRefGoogle Scholar
  12. 11a.
    J. F. Ziegler and J. E. E. Baglin, J. Appl. Phys. 42, 2031 (1971).ADSCrossRefGoogle Scholar
  13. 12.
    W. K. Chu and D. Powers, Phys. Rev. 187, 478 (1969).ADSCrossRefGoogle Scholar
  14. 13.
    D. K, Brice, private communication.Google Scholar
  15. 14.
    O. Almén and G. Bruce, Nucl. Instrum. Methods 11, 257 (1961).ADSCrossRefGoogle Scholar
  16. 15.
    J. Delaplace, J. C. Nicoud, D. Schumacher, and G. Vagi, Phys. Stat. Sol. 29, 819 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • S. M. Myers
    • 1
  • W. Beezhold
    • 1
  • S. T. Picraux
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations