Lattice Disorder in Br, Cl, and F Implanted CdS — Channeling Study

  • W. E. Miller
  • J. A. Hutchby
  • R. C. Webster
Part of the The IBM Research Symposia Series book series (IRSS)


Backscattering of 2 MeV He+ has been used to examine lattice disorder production and annealing of CdS implanted with keV Br, Cl, and F at fluences ranging between 1 × 1014 cm-2 to 1 × 1017 cm-2. Using a calculated value of 60 eV/Å for the dE/dx of 1.80 MeV He+ in CdS, the measured depths of the disorder peaks are 82 Å, 144 Å, and 422 Å, respectively. The measured depths of the Cl and Br disorder peaks are only 42% as deep as their calculated projected ranges, whereas the measured F peak is 71% as deep as that calculated. For each ion species, the number of scattering centers produced increased linearly with log fluence, and for Br a satxiration value of 2.4 × 1016 atoms/cm2 was reached. The Cl implants approach a saturation greater than 5.3 × 1016 atoms/cm2, and no saturation was observed for the F implants. The rates at which Cd atoms are displaced from the lattice are 10 atoms/Br ion, 3 atoms/Cl ion, and 2.5 atoms/F ion. The backscattering spectra do not indicate amorphous layer formation for the saturation Br implants, but do indicate this for the 8 × 1016 Cl/cm2 and the 1 × 1017 F/cm2 implants. The saturation fluence for Br appears consistent with qualitative electron microscopy results for Ag implants in CdS which indicate fluences greater than 1 x× 1015 Ag/ cm2 are required to produce overlapping of discrete disorder clusters observed at lower fluences.

Isochronal anneal studies performed up to 500° C show that a significant amount of disorder is removed between 200° C and 300° C for the F and Cl implants, whereas disorder annealing is found approximately between 100° C and 250° C and between 400° C and 500° C in the Br implanted samples. Reverse annealing was observed for the F and Cl implants in the temperature range 25° C to 200° C. For Br implants, the reverse annealing peaked at 100° C. Previous studies of fast neutron irradiation effects in CdS reveal an anneal stage between room temperature and 300° C. Also, electron microscopy of Ag implants reveal an annealing stage above 400° C, These results tentatively suggest similar defects are present in the neutron, F, and Cl implants and that an additional defect is present in the Ag and Br implants.


Amorphous Layer Annealing Stage Lattice Disorder Saturation Fluence Random Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aven and J. S. Prener, Eds., Physics and Chemistry of II-VI Compounds, (John Wiley and Sons, Inc., New York, 1967).Google Scholar
  2. [2]
    F. Chernow, G. Eldridge, G. Ruse, and L. Wahlin, Appl. Phys. Letters, 12 539 (1968).CrossRefGoogle Scholar
  3. [3]
    W. W. Anderson and J. T. Mitchell, Appl. Phys. Letters, 12 334 (1968).ADSCrossRefGoogle Scholar
  4. [4]
    M. Lichtensteiger, I. Lagnado, and H. C. Gatos, Appl. Phys. Letters, 15 418 (1969).ADSCrossRefGoogle Scholar
  5. [5]
    B. Tell and W. M. Gibson, J. Appl. Phys., 40, 5320 (1969).ADSCrossRefGoogle Scholar
  6. [6]
    B. Tell, W. M. Gibson, and J. W. Rodgers, Appl. Phys. Letters, 17, 315 (1970).ADSCrossRefGoogle Scholar
  7. [7]
    J. P. Donnelly, A. G. Foyt, E. D. Hinkley, W. T. Lurdley, and J. O. Dimmock, Appl. Phys. Letters, 12, 303 (1968).ADSCrossRefGoogle Scholar
  8. [8]
    Y. S. Park and C. H. Chung, Appl. Phys. Letters, 18, 99 (1971).ADSCrossRefGoogle Scholar
  9. [9]
    S. L. Hou, K. Beck, and J. A. Marley, Jr., Appl. Phys. Letters, 14, 151 (1969).ADSCrossRefGoogle Scholar
  10. [10]
    J. Marine and H. Rodot, Appl. Phys. Letters, 17, 352 (1970).ADSCrossRefGoogle Scholar
  11. [11]
    G. Eldridge, P. K. Govind, D. A. Nieman, and F. Chernow, Proc. European Conf. Ion Implantation, Reading, 1970, p. 143Google Scholar
  12. [12]
    P. K. Govind and F. J. Fraikor, J. Appl. Phys., 42, 2476 (1971).ADSCrossRefGoogle Scholar
  13. [13]
    S. A. Armatage, Proc. European Conf. Ion Implantation, Reading, 1970, p. 138.Google Scholar
  14. [14]
    J. A. Olley, P. M. Williams, and A. D. Yoffe, Proc. European Conf. Ion Implantation, Reading, 1970, p. 148.Google Scholar
  15. [15]
    P. M. Williams and A. D. Yoffe, Rad. Effects, 9, 139 (1971).CrossRefGoogle Scholar
  16. [16]
    J. R. Parsons, Phil. Mag., 12, 1159 (1965).MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J. R. Parsons and C. W. Hoelke, Radiation Effects in Semiconductors, Ed. by F. Vook (Plenum, N.Y., 1968) p. 339.Google Scholar
  18. [18]
    J. A. Hutchby, Rad. Effects, 16, 189 (1972).CrossRefGoogle Scholar
  19. [19]
    J. C. McGill, S. L. Kurtin, and G. A. Shifrin, J. Appl. Phys., 41 246 (1970).ADSCrossRefGoogle Scholar
  20. [20]
    J. W. Mayer, L. Eriksson, and J. A. Davies, Ion Implantation in Semiconductors, (Academic Press, N.Y., 1970) pp. 126–148.Google Scholar
  21. [21]
    W. S. Johnson and J. F. Gibbons, Projected Range Statistics in Semiconductors, Dist. by Stanford University Bookstore (1969).Google Scholar
  22. [22]
    E. Bøgh, Can. J. Phys., 46 653 (1968).ADSCrossRefGoogle Scholar
  23. [23]
    P. V. Pavlov, D. I. Tetel’bamn, E. I. Zorin, and V. I. Alekseev, Soviet Physics — Solid State, 8, 2141 (1967).Google Scholar
  24. [24]
    S. T. Picraux, W. H. Weisenberger, and F. L. Vook, Rad. Effects, 7 101 (1971).ADSCrossRefGoogle Scholar
  25. [25]
    W. H. Weisenberger, S. T. Picraux, and F. L. Vook, Rad. Effects, 9 121 (1971).CrossRefGoogle Scholar
  26. [26]
    J. E. Westmoreland, O. M. Marsh, and R. G. Hunsperger, Rad. Effects, 5 245 (1970).ADSCrossRefGoogle Scholar
  27. [27]
    J. W. Mayer, L. Eriksson, S. T. Picraux, and J. A. Davies, Can. J. Phys., 46 663 (1968).ADSCrossRefGoogle Scholar
  28. [28]
    G. H. Kinchin and R. S. Pease, Rept. Prog. Phys., 18 1 (1955).ADSCrossRefGoogle Scholar
  29. [29]
    F. Chernow, “Synthesis and Characterization of Thin Ferroelectric and Semiconducting Films,” AFML-TR-70–9, April 1970.Google Scholar
  30. [30]
    R. T. Johnson, Jr., J. Appl. Phys., 39, 3517 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. E. Miller
    • 1
  • J. A. Hutchby
    • 1
  • R. C. Webster
    • 1
  1. 1.NASA Langley Research CenterHamptonUSA

Personalised recommendations