Photoluminescence, Optical Absorption, and Cathodoluminescence in Ion Implanted CdS

  • C. E. Barnes
  • C. B. Norris
  • H. J. Stein
  • W. Beezhold
Part of the The IBM Research Symposia Series book series (IRSS)


Photoluminescence and optical absorption have been measured at 90 K in undoped CdS before and after ion bombardment at 90 K and as a function of isochronal annealing to 350 K. Implantation with Ar+, Cu+, Cl+, He+, or H+ ions at energies sufficient to penetrate the depth of most of the U.V. excitation severely quenches all the luminescence and introduces continuous absorption beyond the absorption edge. These effects are observed for fluences of ~ 2 × 1014 cm-2 for H+ and ~ 5 × 1011 cm-2 for the heavier ions. However, upon annealing to 350 K the ion-induced absorption disappears and the green edge emission at 5200 Å, which is seen initially in almost all samples, partially recovers. A more striking change is the growth of a broad red band at 7200 Å to intensities much greater than observed prior to implant of the above ions. The red emission center is believed to be a relatively simple native defect center which, upon annealing, evolves from the more complex damage introduced initially by the implantation.

Cathodoluminescence measurements were also made on Ar+ implanted CdS as a function of exciting electron energy (1–20 keV). The results indicate that information concerning the depth distribution of ion-induced damage and radiative centers can be obtained with this technique. For example, the emission at 7200 Å exhibited by an implanted and annealed sample is shown to originate in the near-surface region consistent with the predicted depth for an ion-induced defect center.


Electron Irradiation Defect Cluster Radiative Center Edge Emission Cathodoluminescence Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, B. Tell, W. M. Gibson, and J. W. Rogers, Appl. Phys. Lett. 17, 315 (1970)ADSCrossRefGoogle Scholar
  2. 1a.
    G. W. Arnold, R. E. Whan, J. K. Maurin, and J. A. Borders, Rad. Effects 9, 257 (1971)ADSCrossRefGoogle Scholar
  3. 1b.
    G. W. Arnold, R. E. Whan, J. K. Maurin, and J. L. Merz and L. C. Feldman, Appl. Phys. Lett. 15, 129 (1969).CrossRefGoogle Scholar
  4. 2.
    G.W. Arnold in Ion Implantation in Semiconductors, edited by I. Ruge and J. Graul (Springer-Verlag, Berlin, 1971), P. 151CrossRefGoogle Scholar
  5. 3.
    K. Gamo, K. Aoki, K. Masuda, and S. Namba, Japan. J. Appl. Phys. 10, 1118 (1971).ADSCrossRefGoogle Scholar
  6. 4.
    F. L. Vook and S. T. Picraux in Ion Implantation in Semiconductors, edited by I. Ruge and J. Graul (Springer-Verlag, Berlin, 1971), p. 141.CrossRefGoogle Scholar
  7. 5.
    S. T. Picraux, to be published in Rad. Effects.Google Scholar
  8. 6.
    M. V. Sullivan and W. R. Bracht, J. Electrochem. Soc. 114, 295 (1967).CrossRefGoogle Scholar
  9. 7.
    H. J. Stein (to be published).Google Scholar
  10. 8.
    See, for example, F. J. Bryant and C.J. Radford, Solid-St. Commun. 10, 1093 (1972).ADSCrossRefGoogle Scholar
  11. 9.
    This is a commonly observed characteristic of poorly prepared CdS surfaces. We have observed this effect in the course of this work.Google Scholar
  12. 10.
    B. A. Kulp and R. H. Kelley, J. Appl. Phys. 31, 1057 (1960).ADSCrossRefGoogle Scholar
  13. 11.
    R. B. Oswald and C. Kikuchi, Nucl. Sci. Eng. 23, 354 (1965).Google Scholar
  14. 12.
    C. E. Barnes, Rad. Effects 8, 221 (1971).ADSCrossRefGoogle Scholar
  15. 13.
    G. W. Arnold (this conference).Google Scholar
  16. 14.
    B. L. Gregory and H. H. Sander, IEEE Trans. Nucl. Sci. NS-14, 116 (1967).ADSCrossRefGoogle Scholar
  17. 15.
    E. P. EerNisse and C. B. Norris, Solid-St. Electron, (to be published).Google Scholar
  18. 16.
    M. Avinor and G. Meijer, J. Chem. Phys. 32, 1456 (1960).ADSCrossRefGoogle Scholar
  19. 17.
    Based on calculations by D. K. Brice.Google Scholar
  20. 18.
    W. S. Johnson and J. F. Gibbons, Projected Range Statistics in Semiconductors (Dowden, Ross, and Hutchinson Publishers, Stroudsburg, Pa., 1973).Google Scholar
  21. 19.
    V. V. Makarov, Sov. Phys.--Solid State 9, 457 (1967).Google Scholar
  22. 20.
    R. Gauthier, P. Pinard, and F. Davoine, L’Onde Electrique 52, 269 (1972).Google Scholar
  23. 21.
    F. H. Nicoll, J. Appl. Phys. 43, 4119 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • C. E. Barnes
    • 1
  • C. B. Norris
    • 1
  • H. J. Stein
    • 1
  • W. Beezhold
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations