# Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays

## Abstract

The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for ^{32}S and ^{31}P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) ψ_{1/2},x_{min} and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 10^{14} atoms.cm^{-2} in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV ^{31}P annealed at 450^{o}C is highly (93%) substitutional in Ge for a dose of 0.7 x 10^{15} ions.cm^{-2}, but shows a much lower fraction at 2.7 x 10^{15} ions.cm. Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing ≤ 50% x_{min}. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans.

## Keywords

Lattice Location Beam Type Angular Scan Substitutional Fraction Target Bremsstrahlung## Preview

Unable to display preview. Download preview PDF.

## References

- [1]See, for example, J. W. Mayer, L. Eriksson and J. A. Davies, “Ion Implantation in Semiconductors”, (Academic Press, New York, 1970).Google Scholar
- [2]J. A. Davies, L. Eriksson, N. G. E. Johansson and I. V. Mitchell, Phys. Rev. 181, 548 (1969).ADSCrossRefGoogle Scholar
- [3]J. W. Mayer, L. Eriksson and J. A. Davies, Can. J. Phys. 46, 633 (1968).ADSCrossRefGoogle Scholar
- [4]J. Gyulai, O. Meyer, R. D. Pashley and J. W. Mayer, Rad. Effects 7, 17 (1971).ADSCrossRefGoogle Scholar
- [5]K. Björkvist, B. Domeij, L. Eriksson, G. Fladda, A. Fontell and J. W. Mayer, Appl. Phys. Lett. 13, 379 (1968).ADSCrossRefGoogle Scholar
- [6]J. A. Davies, J. Denhartog and J. L. Whitton, Phys. Rev. 165, 345 (1968).ADSCrossRefGoogle Scholar
- [7]J. D. Garcia, Phys. Rev. A4, 955 (1971).ADSGoogle Scholar
- [8]D. L. Walters and C. P. Bhalla, Phys. Rev. A3 1919 (1971).ADSGoogle Scholar
- [9]E. Merzbacher and H. W. Lewis, Handbuch der Physik, Vol. 34, (Ed. S. Flügge, Springer-Verlag, 1958) 166 ff.Google Scholar
- [10]F. W. Saris, I. V. Mitchell and J. F. Chemin, to be published.Google Scholar
- [11]K. B. Winterbon, “Range-Energy Data for keV Ions in Amorphous Materials”, AECL-3194 (1968).Google Scholar
- [12]B. Domeij, G. Fladda and N. G. E. Johansson, Rad. Effects 6 155 (1970).ADSCrossRefGoogle Scholar
- [13]J. U. Andersen, G. Andreasen, J. A. Davies and E. Uggerhøj, Rad. Effects 7 25 (1971).ADSCrossRefGoogle Scholar
- [14]O. Herzer and S. Kalbitzer in “Ion Implantation in Semiconductors”, Ed. by I. Rüge and J. Graul (Springer-Verlag, Berlin, 1971) p. 307.CrossRefGoogle Scholar
- [15]J. Haskeil, E. Rimini and J. W. Mayer, J. Appl. Phys. 43 3425 (1972).ADSCrossRefGoogle Scholar
- [16]S. T. Picraux, N. G. E. Johansson and J. W. Mayer, in “Semiconductor Silicon” Ed. by R. R. Haberecht and E. L. Kern (Electrochemical Society, New York, 1969) p. 422.Google Scholar
- [17]S. T. Picraux, W. M. Gibson and W. L. Brown, Phys. Rev. B6, 1382 (1972).ADSGoogle Scholar