Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays

  • J. F. Chemin
  • I. V. Mitchell
  • F. W. Saris
Part of the The IBM Research Symposia Series book series (IRSS)


The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for 32S and 31P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) ψ1/2,xmin and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 1014 in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV 31P annealed at 450oC is highly (93%) substitutional in Ge for a dose of 0.7 x 1015, but shows a much lower fraction at 2.7 x 1015 Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing ≤ 50% xmin. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans.


Lattice Location Beam Type Angular Scan Substitutional Fraction Target Bremsstrahlung 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See, for example, J. W. Mayer, L. Eriksson and J. A. Davies, “Ion Implantation in Semiconductors”, (Academic Press, New York, 1970).Google Scholar
  2. [2]
    J. A. Davies, L. Eriksson, N. G. E. Johansson and I. V. Mitchell, Phys. Rev. 181, 548 (1969).ADSCrossRefGoogle Scholar
  3. [3]
    J. W. Mayer, L. Eriksson and J. A. Davies, Can. J. Phys. 46, 633 (1968).ADSCrossRefGoogle Scholar
  4. [4]
    J. Gyulai, O. Meyer, R. D. Pashley and J. W. Mayer, Rad. Effects 7, 17 (1971).ADSCrossRefGoogle Scholar
  5. [5]
    K. Björkvist, B. Domeij, L. Eriksson, G. Fladda, A. Fontell and J. W. Mayer, Appl. Phys. Lett. 13, 379 (1968).ADSCrossRefGoogle Scholar
  6. [6]
    J. A. Davies, J. Denhartog and J. L. Whitton, Phys. Rev. 165, 345 (1968).ADSCrossRefGoogle Scholar
  7. [7]
    J. D. Garcia, Phys. Rev. A4, 955 (1971).ADSGoogle Scholar
  8. [8]
    D. L. Walters and C. P. Bhalla, Phys. Rev. A3 1919 (1971).ADSGoogle Scholar
  9. [9]
    E. Merzbacher and H. W. Lewis, Handbuch der Physik, Vol. 34, (Ed. S. Flügge, Springer-Verlag, 1958) 166 ff.Google Scholar
  10. [10]
    F. W. Saris, I. V. Mitchell and J. F. Chemin, to be published.Google Scholar
  11. [11]
    K. B. Winterbon, “Range-Energy Data for keV Ions in Amorphous Materials”, AECL-3194 (1968).Google Scholar
  12. [12]
    B. Domeij, G. Fladda and N. G. E. Johansson, Rad. Effects 6 155 (1970).ADSCrossRefGoogle Scholar
  13. [13]
    J. U. Andersen, G. Andreasen, J. A. Davies and E. Uggerhøj, Rad. Effects 7 25 (1971).ADSCrossRefGoogle Scholar
  14. [14]
    O. Herzer and S. Kalbitzer in “Ion Implantation in Semiconductors”, Ed. by I. Rüge and J. Graul (Springer-Verlag, Berlin, 1971) p. 307.CrossRefGoogle Scholar
  15. [15]
    J. Haskeil, E. Rimini and J. W. Mayer, J. Appl. Phys. 43 3425 (1972).ADSCrossRefGoogle Scholar
  16. [16]
    S. T. Picraux, N. G. E. Johansson and J. W. Mayer, in “Semiconductor Silicon” Ed. by R. R. Haberecht and E. L. Kern (Electrochemical Society, New York, 1969) p. 422.Google Scholar
  17. [17]
    S. T. Picraux, W. M. Gibson and W. L. Brown, Phys. Rev. B6, 1382 (1972).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. F. Chemin
    • 1
    • 2
  • I. V. Mitchell
    • 1
  • F. W. Saris
    • 1
    • 3
  1. 1.Chalk River Nuclear LaboratoriesCanada
  2. 2.L’Université de BordeauxBordeauxFrance
  3. 3.FOM-Institute for Atomic and Molecular PhysicsAmsterdam, HollandNetherlands

Personalised recommendations