The Application of Ion Implantation to the Study of Diffusion of Boron in Silicon

  • B. L. Crowder
  • J. F. Ziegler
  • F. F. Morehead
  • G. W. Cole
Part of the The IBM Research Symposia Series book series (IRSS)


Implantations of10B were employed in conjunction with analysis of B depth distributions with the nuclear reaction,10B(n,4He)7Li, to investigate the diffusion of B in Si in the temperature range 900 to 1100°C for times of the order of 30 to 120 minutes. The diffusion constant, D, in Si was found to depend upon the B concentration. In order to evaluate the dependence of D upon B concentration, a series of isoconcentration experiments were conducted in which a “flat”11B distribution was produced by multiple energy ion implantations followed by a “tracer” implant of 10B. At 1000°C and a B concentration of 1020 cm-3, D is an order of magnitude larger than the intrinsic value of 1.5x10-14 cm2/sec. In Si heavily doped with As(2×1020cm-3), the diffusivity of B is an order of magnitude lower than the intrinsic value. These results can be interpreted by a model in which the B diffusivity in Si is a function of the Fermi level.


Diffusion Constant Hole Concentration Intrinsic Diffusivity Multiple Energy Tion Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. N. Mikhailova, Sov.Phys.-Solid State 4, 2195 (1962).Google Scholar
  2. [2]
    S. Maekawa and T. Oshida, J.Phys.Soc.Japan 19, 253 (1964).ADSCrossRefGoogle Scholar
  3. [3]
    M. Okamura, J. Appl.Phys.Japan 8, 1440 (1969).ADSCrossRefGoogle Scholar
  4. [4]
    D. M. Brown and P. R. Kennicott, J. Electrochem. Soc. 118, 293(1971)Google Scholar
  5. [5]
    J. Crank, The Mathematics of Diffusion, p.232ff (Oxford Univ. Press, London, 1956).MATHGoogle Scholar
  6. [6]
    F. M. Smits, Proc. IRE 46, 1049 (1958).CrossRefGoogle Scholar
  7. [7]
    B. J. Masters and J. M. Fairfield, J. Appl. Phys. 40, 2390 (1969).ADSCrossRefGoogle Scholar
  8. [8]
    J. Makris and B. J. Masters, J. Appl. Phys. 42, 3750 (1971).ADSCrossRefGoogle Scholar
  9. [9]
    J. Makris and B. J. Masters, Electrochem. Soc. Extended Abstracts 72–1, p 112, Houston, May 7–11, 1972.Google Scholar
  10. [10]
    J. F. Ziegler, G. W. Cole, and J. E. E. Baglin, J. Appl. Phys. 43, 3809 (1972).ADSCrossRefGoogle Scholar
  11. [11]
    B. L. Crowder, J. F. Ziegler, and G. W. Cole, this conferenceGoogle Scholar
  12. [12]
    J. F. Ziegler, B. L. Crowder, G. W. Cole, J. E. E. Baglin and B. J. Masters, Appl. Phys. Ltrs. 21, 16 (1972).ADSCrossRefGoogle Scholar
  13. [13]
    T. E. Seidel and A. U. MacRae, Trans. Met. Soc. AIME 245, 491(1969).Google Scholar
  14. [14]
    A. D. Kurtz and R. Yee, J. Appl. Phys. 31, 303 (1960).ADSCrossRefGoogle Scholar
  15. [15]
    S. Wagner, J. Electrochem. Soc. 119, 1570 (1972).CrossRefGoogle Scholar
  16. [16]
    D. L. Kendall and D. B. deVries, Semiconductor Silicon, ed. by R. R. Haberecht (The Electrochemical Society, Inc. New York 1969), p. 358 ffGoogle Scholar
  17. [17]
    S. M. Hu and S. Schmidt, J. Appl. Phys. 39, 4272 (1968).ADSCrossRefGoogle Scholar
  18. [18]
    F. J. Morin and J. P. Amita, Phys. Rev. 96, 28 (1954)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • B. L. Crowder
    • 1
  • J. F. Ziegler
    • 1
  • F. F. Morehead
    • 1
  • G. W. Cole
    • 2
  1. 1.IBM Watson Research CenterYorktown HeightsUSA
  2. 2.Brookhaven National LaboratoriesUptonUSA

Personalised recommendations