Advertisement

Boron Doping Profiles and Annealing Behavior of Amorphous Implanted Silicon Layers

  • H. Ryssel
  • H. Müller
  • K. Schmid
  • I. Ruge
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

Different possibilities for amorphization of silicon in connection with boron implantation have been compared. The methods described are silicon and neon predamage implants, implantation of BF2 molecules, and implantation of boron at 77K. All implantations show a typical amorphous annealing behavior with a steep increase in activation around 500-650°C without reverse annealing. Depending on annealing temperature and time, doping and mobility profiles were measured. For annealing temperatures below 900°C damage dependent electrical activation occurs with complete activation above 650°C in the recrystallized amorphous layer. All four methods are useful for doping, but mobility after annealing only for cold boron and neon predamage implants approach values corresponding to bulk data. Only in the case of neon predamage implantations the whole doping profile can be placed into the amorphous layer in order to achieve low annealing temperatures.

Keywords

Boron Atom Amorphous Layer Doping Profile Bulk Data Mobility Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. G. Blamires, European Conf. on Ion Implantation, Reading, p. 52, P. Peregrinus Ltd., Stevenage (1970).Google Scholar
  2. [2]
    L. O. Bauer, Ion Implantation in Semiconductors, p. 70, Eds. I. Ruge and J. Graul, Springer, Berlin (1971).CrossRefGoogle Scholar
  3. [3]
    H. Mllller, H. Ryssel and I. Ruge, Ion Implantation in Semiconductors, p. 85, Eds. I. Ruge and J. Graul, Springer, Berlin (1971).CrossRefGoogle Scholar
  4. [4]
    R. L. Pertritz, Phys. Rev. 110, 1254 (1958).ADSCrossRefGoogle Scholar
  5. [5]
    T. E. Seidel, Ion Implantation in Semiconductors, p. 47, Eds. I. Ruge and J. Graul, Springer, Berlin (1971).CrossRefGoogle Scholar
  6. [6]
    H. Müller, Thesis (1972).Google Scholar
  7. [7]
    D. K. Brice, Ion Implantation, p. 101, Eds. F. H. Eisen and C. T. Chadderton, Gordon Breach, London (1971).Google Scholar
  8. [8]
    F. H. Eisen, B. Welch, J. E. Westmoreland and J. W. Mayer, Proc. Int. Conf. Atomic Collision Phenomena in Solids, p. 111, Eds. D. W. Palmer, M. W. Thomson and P. D. Townsend, American Elsevier, New York (1970).Google Scholar
  9. [9]
    W. S. Johnson and J. F. Gibbons, Projected Range Statistics in Semiconductors., Stanford University Bookstore, Stanford (1965).Google Scholar
  10. [10]
    Vick and Whittle, J. Electrochem. Soc. 116, 1142 (1969).CrossRefGoogle Scholar
  11. [11]
    T. E. Seidel and A. U. Mac Rae, Trans. Met. Soc. AIME 245, 491 (1969).Google Scholar
  12. [12]
    W. K. Hofker, H. W. Werner, D. P. Oosthoek and H. A. M. H. A. M. de Grefte, these proceedingsGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. Ryssel
    • 1
  • H. Müller
    • 1
  • K. Schmid
    • 1
  • I. Ruge
    • 1
  1. 1.Lehrstuhl für integrierte SchaltungenTechnische UniversitätMünchenGermany

Personalised recommendations