Determination of the Critical Dose for Different Mass Ions Implanted into Silicon

  • H. Müller
  • K. Schmid
  • H. Ryssel
  • I. Ruge
Part of the The IBM Research Symposia Series book series (IRSS)


A simple theoretical model for the mass dependence of the critical dose of ion implanted silicon is reported in which the energy into atomic processes is considered as a basic quantity for the determination of the number of displaced target atoms. Backscattering experiments on samples implanted at an energy of 150 keV at low temperatures with B, Ne, P, Kr, Sb will be presented. The annealing behavior of damage distributions is investigated both by back-scattering of 1.3 MeV He ions and by electrical measurements for the dopant ions B, P, and Sb. A correlation between the different results for the critical dose is evaluated.


Amorphous Layer Damage Distribution Annealing Behavior High Order Contribution Critical Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. J. Stein, Rad. Effects 9, 195 (1971).ADSCrossRefGoogle Scholar
  2. [2]
    V. M. Gusev, Martynenko, C. V. Starinin, Atomic Collision Phenomena in Solids, p. 162, Ed. D. W. Thompson, P. D. Townsend American Elsevier Publ. Co. Inc., New York (1970).Google Scholar
  3. [3]
    F. H. Eisen, Ion Implantation in Semiconductors, p. 445, Ed. Eisen, L. T. Chadderton Gordon & Breach, London (1972).Google Scholar
  4. [4]
    J. W. Mayer, L. Eriksson and J. A. Davies, Ion Implantation in Semiconductors, Academic Press, New York (1970).Google Scholar
  5. [5]
    J. Lindhard, V. Nielsen, M. Scharff and P. V. Thomsen, Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 10 (1968).Google Scholar
  6. [6]
    P. V. Thomsen, private communication.Google Scholar
  7. [7]
    H. E. Schiøtt, Mat. Fys, Medd. Dan. Vid. Selsk. 35, No. 9 (1966).Google Scholar
  8. [8]
    W. S. Johnson and J. F. Gibbons, Projected Range Statistics in Semiconductors, Stanford University Bookstore, Stanford (1969).Google Scholar
  9. [9]
    S. Furukawa, Jap. J. Appl. Phys. 11, 102 (1972).Google Scholar
  10. [10]
    P. Sigmund and J. B. Sanders, International Conf. on Applications of Ion Beams to Semiconductor Technology, Ed. P. Glotin, Grenoble (1967).Google Scholar
  11. [11]
    P. Sigmund, M. T. Matthias, D. L. Phillips, Rad. Effects 11 39 (1971).CrossRefGoogle Scholar
  12. [12]
    K. B. Winterbon, Rad. Effects 13, 215 (1972).CrossRefGoogle Scholar
  13. [13]
    D. K. Brice, Ion Implantation in Semiconductors, p. 101, Ed. F. H. Eisen, L. T. Chadderton, Gordon & Breach, London (1971).Google Scholar
  14. [14]
    F. F. Morehead, B. L. Crowder, Ion Implantation, p. 25, Ed. F. H. Eisen, L. T. Chadderton, Gordon & Breach, London (1971).Google Scholar
  15. [15]
    H. Müller, to be published.Google Scholar
  16. [16]
    P. Sigmund, Appl. Phys. Letters 14 114 (1969).ADSCrossRefGoogle Scholar
  17. [17]
    D. K. Brice, private communication.Google Scholar
  18. [18]
    G. D. Watkins, in Radiation Effects in Semiconductors, Ed. F. L. Vook, p. 67, Plenum Press, New York (1968).Google Scholar
  19. [19]
    J. E. Westmoreland, P. Sigmund, Ion Implantation in Semiconductors, p. 113, Ed. F. H. Eisen, L. T. Chadderton, Gordon & Breach, London (1971).Google Scholar
  20. [20]
    D. E. Davies, Appl. Phys. Letters 14, 227 (1969).ADSCrossRefGoogle Scholar
  21. [21]
    K. H. Eklund, A. Andersson. Ion Implantation in Semiconductors, p. 103, Ed. I. Ruge, J. Graule, Springer Berlin (1971).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. Müller
    • 1
  • K. Schmid
    • 1
  • H. Ryssel
    • 1
  • I. Ruge
    • 1
  1. 1.Lehrstuhl für Intergrierte SchaltungenTechnische Universität MünchenWest Germany

Personalised recommendations