Experimental Analysis of Concentration Profiles of Boron Implanted in Silicon

  • W. K. Hofker
  • H. W. Werner
  • D. P. Oosthoek
  • H. A. M. de Grefte
Part of the The IBM Research Symposia Series book series (IRSS)


The concentration profiles of boron implantations in silicon are measured using secondary ion mass spectrometry. In this method the implanted silicon is sputtered by bombardment with 5.5 keV oxygen ions. The resulting secondary B+-current is measured continuously as a function of time. The time scale is transformed into a depth scale by measuring the erosion rate. The reliability of this method is checked and discussed. This method is used in the study of the specific shape of the profiles of boron implanted in a dense crystal direction. This was done by varying the implantation conditions such as temperature, crystal direction, crystal perfection. The boron profiles in amorphous silicon were compared with theory. Another aspect studied is the profile distortion due to heat treatments. By comparison of the boron profiles with corresponding electrical profiles valuable additional information was obtained.


Amorphous Silicon Boron Concentration Implantation Direction Tail Formation Boron Implantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. K. Hofker, H. W. Werner, D. P, Oosthoek, H. A. M. de Grefte; to be published in Radiation Effects.Google Scholar
  2. [2]
    K. B. Winterbon, Radiation Effects 13, 215 (1972).CrossRefGoogle Scholar
  3. [3]
    J. F. Ziegler, G. W. Cole, J. E. E. Baglin, J. Appl. Phys. 43, 3809 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    R. Castaing, G. Slodzian, J. de Microscopie 1, 395 (1962).Google Scholar
  5. [5]
    M. Croset, Revue Technique Thompson-CSF 3, 1, 19 (1971).Google Scholar
  6. [6]
    Manufactured by Rank-Taylor-Hobson.Google Scholar
  7. [7]
    F. Schulz, K. Wittmaack, J. Maul, Int. Conf. on Ion Surface Interaction, Garching, Sept. 1972.Google Scholar
  8. [8]
    L. C. Feldman, J. W. Rodgers, J. Appl. Phys. 41 3776.Google Scholar
  9. [9]
    K. B. Winterbon, P. Sigmund, J. B. Sanders, Mat. fys, Medd. Dan. Vid. Selsk. 37, 14 (1970).Google Scholar
  10. [10]
    K. B. Winterbon, private communication.Google Scholar
  11. [11]
    J. Lindhard, M. Scharff, H. E. Schiøtt, Mat. fy. Medd. Dan. Vid. Selsk. 33, 14 (1963).Google Scholar
  12. [12]
    M. G. Kendall, A. Stuart, The Advanced Theory of Statistics, Vol. 1, 148 (Charles Griffin, London, 1958).Google Scholar
  13. [13]
    H. K. Kuiken, private communication.Google Scholar
  14. [14]
    F. H. Eisen, B. Welch, J. E. Westmoreland, J. W. Mayer, Proc. Int. Conf. on Atomic Collisions, Brighton, 1969, Ed. D. W. Palmer, M. W. Thompson, P. D. Twonend (North-Holland Publishing Company).Google Scholar
  15. [15]
    H. Strack, J. Appl. Phys. 2405 (1963).Google Scholar
  16. [16]
    D. G. Nelson, J. F. Gibbons, W. S. Johnson, Appl. Phys. Letters 15, 8 246.Google Scholar
  17. [17]
    E. M. Pell, J. Appl. Phys. 31, 291 (1960).ADSCrossRefGoogle Scholar
  18. [18]
    J. C. North, W. M. Gibson, Radiation Effects 6, 199 (1970).ADSCrossRefGoogle Scholar
  19. [19]
    A. D. Kurz, R. Yee, J. Appl. Phys. 31, 303 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • W. K. Hofker
    • 1
  • H. W. Werner
    • 1
  • D. P. Oosthoek
    • 1
  • H. A. M. de Grefte
    • 1
  1. 1.Philips’ Research LaboratoriesEindhovenNetherlands

Personalised recommendations