Energy Dependence and Annealing Behaviour of Boron Range Distributions in Silicon

  • K. Wittmaack
  • J. Maul
  • F. Schulz
Part of the The IBM Research Symposia Series book series (IRSS)


Range distributions of 10 to 250 keV boron ions implanted into amorphous (predamaged) silicon have been determined using a recently developed secondary ion mass spectrometry technique. Due to the high experimental accuracy not only characteristic distribution parameters but also variations in the profile shape could be determined. Above about 40 keV deviations from Gaussian distributions were observed as a result of increasing electronic stopping.

The most probable projected ranges are in very good agreement with recent measurements of the distribution of electrical activity in randomly implanted single crystal silicon. From a comparison of experimental results with recent profile computation the electronic stopping cross section is found to be proportional to E0.4for energies E between 50 keV and 1.0 MeV.

The influence of annealing on the original range distribution has been investigated in the 40 keV case. Broadening of the as — implanted profiles was observed at temperatures necessary for recrystallization of the formerly amorphous silicon. This is attributed to enhanced diffusion. More pronounced broadening and tailing, however, has been reported for single crystal silicon.


Amorphous Silicon Single Crystal Silicon Range Profile Electrical Profile High Mass Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    J, Lindhard, M. Scharff and H.E. Schiøtt, Mat. Fys. Medd. Dan. Vid. Selsk. 33 (1963) no. 14.Google Scholar
  2. /2/.
    B. Fastrup, P. Hvelplund and C. A. Sautter, Mat. Fys. Medd. Dan. Vid. Selsk. 35 (1966) no. 10.Google Scholar
  3. /3/.
    H.E. Schiøtt, Can. J. Phys. 46 (1968) 449.ADSCrossRefGoogle Scholar
  4. /4/.
    J.W. Mayerj L. Eriksson and J.A. Davies, Ion Implantation in Semiconductors, Academic Press, New York 1970.Google Scholar
  5. /5/.
    J. Bøttiger, J.A. Davies, P. Sigmund and K.B. Winterbon, Rad. Effects 11 (1971) 69.CrossRefGoogle Scholar
  6. /6/.
    K.B. Winterbon, Rad. Effects 13 (1972) 215.CrossRefGoogle Scholar
  7. /7/.
    K. Wittmaack, J. Maul and F. Schulz, Int. J. Mass Spectrom. Ion Physics 13 (1973) xx.Google Scholar
  8. /8/.
    F. Schulz, K. Wittmaack and J. Maul, Rad. Effects, in press.Google Scholar
  9. /9/.
    J. Maul, F. Schulz and K. Wittmaack, Phys. Letters 41A (1972)177.ADSGoogle Scholar
  10. /10/.
    N.G. Blamires, M. D. Matthews and R. S. Nelson, Phys. Letters 28A (1968)178.ADSGoogle Scholar
  11. /11/.
    D.E. Davies, Canad. J. Phys. 47 (1969) 1750.ADSCrossRefGoogle Scholar
  12. /12/.
    D.P. Lecrosnier and G.P. Pelous, European Conf. Ion Implantation, Peter Peregrinus Ltd., Stevenage 1970, p. 102.Google Scholar
  13. /13/.
    I. Ruge and J. Graul (Ed.), Proc. II. Int. Conf. Ion Implantation in Semiconductors, Springer, Berlin 1971.Google Scholar
  14. /14/.
    T. E. Seidel, I. Ruge and J. Graul (Ed.), Proc. II. Int. Conf. Ion Implantation in Semiconductors, Springer, Berlin 1971. p. 47.Google Scholar
  15. /15/.
    S.M. Davidson, I. Ruge and J. Graul (Ed.), Proc. II. Int. Conf. Ion Implantation in Semiconductors, Springer, Berlin 1971, p. 79.Google Scholar
  16. /16/.
    H. Müller, H. Ryssel and I. Ruge, I. Ruge and J. Graul (Ed.), Proc. II. Int. Conf. Ion Implantation in Semiconductors, Springer, Berlin 1971, p. 85.Google Scholar
  17. /17/.
    K. Wittmaack, F. Schulz and J. Maul, to be published.Google Scholar
  18. /18/.
    F.H. Eisen, unpublished work, see F.H. Eisen, B. Welch, J.E. Westmoreland and J.W. Mayer in D.W. Palmer, M.W. Thompson and P.D. Townsend (Ed), Atomic Collision Phenomena in Solids, North Holland Publ. Comp., Amsterdam 1970, p. 111.Google Scholar
  19. /19/.
    R.N. Ghoshtagore, Phys. Rev. B3 (1971) 389.ADSGoogle Scholar
  20. /20/.
    D.J. Mazey, R.S. Nelson and R.S. Barnes, Phil. Mag. 17 (1968) 1145.ADSCrossRefGoogle Scholar
  21. /21/.
    K.B. Winterbon, private communication.Google Scholar
  22. /22/.
    W.S. Johnson and J.F. Gibbons, Projected Range Statistics in Semiconductors, dist. by Stanford Univerity Bookstore.Google Scholar
  23. /23/.
    H.E. Schiøtt, private communication.Google Scholar
  24. /24/.
    F.H. Eisen, Can. J. Phys. 46 (1968) 561.ADSCrossRefGoogle Scholar
  25. /25/.
    K. Gamo, M. Iwaki, K. Masuda, S. Namba, S. Ishihara and I. Kimura, in /13/, p. 459.Google Scholar
  26. /26/.
    S. Namba, K. Iwaki, G. Gamo and K. Masuda, this conference, Paper no. II 4.Google Scholar
  27. /27/.
    H. Herrmann, H. Lutz und R. Sizmann, Z. Naturforschung 21a (1966) 365.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • K. Wittmaack
    • 1
  • J. Maul
    • 1
  • F. Schulz
    • 1
  1. 1.Physikalisch-Technische AbteilungGesellschaft für Strahlen- und Umweltforschung mbH MünchenNeuherbergGermany

Personalised recommendations