Advertisement

Statistical EEG Analysis in Strains of Rats with Genetically Determined Different Learning Performance

  • G. Dolce
  • K. Offenloch
  • W. G. Sannita
  • H. Müller-Calgan
  • H. Decker

Abstract

The EEG of the sensorimotor cortex and the hippocampus in two strains of rats with genetically determined different conditioned behaviour was recorded. The statistical evaluation of the spectral components of the EEG displayed differences in the distribution of the frequency bands and their relative intensities in “good” and “bad” learners before and after training. So it was possible to analyse quantitatively different EEG patterns possibly resulting from genetic and conditioned influences.

Keywords

Frequency Band Sensorimotor Cortex Good Learner Dorsal Hippocampus Slow Wave Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adey, W. R.: Intrinsic organization of cerebral tissue in alerting, orienting and discriminative responses. In: The Neurosciences (G. C. Quarton, T. Melnechuk and F. O. Schmitt, eds.), pp. 615–633, Rockefeller University Press, New York (1967).Google Scholar
  2. Adey, U. R., C. W. Dunlop, and C. E. Hendrix: Hippocampal slow waves; distribution and phase relations in the course of approach learning. Arch. Neurol. (Chic.) 3, 74–90 (1960).CrossRefGoogle Scholar
  3. Adey, W. R., and D. O. Walter: Application of phase detection and averaging techniques in computer analysis of EEG records in the cat. Exp. Neurol. 7, 186–209 (1963).CrossRefGoogle Scholar
  4. Adey, W. R., D. O. Walter, and C. E. Hendrix: Computer techniques in correlation and spectral analysis of cerebral slow waves during discriminative behavior. Exp. Neurol. 3, 501–524 (1961).CrossRefGoogle Scholar
  5. Adey, W. R., D. O. Walter, and D. F. Lindsley: Effects of subthalamic lesions on learned behavior and correlated hippocampal and subcortical slow wave activity. Arch. Neurol. (Chic.) 6, 194–207 (1962).CrossRefGoogle Scholar
  6. Andersen, P., and J. C. Eccles: Inhibitory phasing of neuronal discharge. Nature (Lond.) 196, 645–647 (1962).CrossRefGoogle Scholar
  7. Anokhin, P. K.: The electroencephalogram as a resultant of ascending influences on the cells of the cortex. Electroenceph. clin. Neurophysiol. 16, 27–43 (1964).Google Scholar
  8. Brazier, M. A. B.: Stimulation of the hippocampus in man using implanted electrodes. In: Brain Function, II, RNA and Brain Function Memory and Learning, University of California Press, Berkely, Los Angeles (1964).Google Scholar
  9. Bures, J., O. Buresova, T. Weiss, E. Fifkova, and Z. Bohdanecky: Experimental study of the role of hippocampus in conditioning and memory function. In: Physiologie de L’Hippocampe, C.N.R.S., pp. 241–256, Paris (1962).Google Scholar
  10. Creutzfeldt, O. D., J. M. Fuster, H. D. Lux, and A. Nacimiento: Experimenteller Nachweis von Beziehungen zwischen EEG-Wellen und der Aktivität cortical er Nervenzellen. Naturwissenschaften 51, 166–167 (1964).CrossRefGoogle Scholar
  11. Drachman, D., and A. Ommaya: Memory and the hippocampal cortex. Arch. Neurol. (Chic.) 10, 411–425 (1964).CrossRefGoogle Scholar
  12. Dumermuth, G.: Die Anwendung von Varianzspectra für einen quantitativen Vergleich von EEG bei Zwillingen. Heiv. paediat. acta 24, 45–54 (1969).Google Scholar
  13. Dustman, R. E., and E. C. Beck: The visually evoked potential in twins. EEG clin, neurophysiol. 19, 570–575 (1965).CrossRefGoogle Scholar
  14. Eccles, J.C.: Conscious experience and memory. In: Brain and Conscious Experience, J. C. Eccles, ed.), pp. 314–344, Springer-Verlag (1966).Google Scholar
  15. Elazar, Z., and W. R. Adey: Spectral analysis of low frequency components in the electrical activity of the hippocampus during learning. EEG clin. Neurophysiol. 23, 225–240 (1967).CrossRefGoogle Scholar
  16. Elul, R.: Specific site of generation of brain waves. The Physiologist 7, 125 (1964).Google Scholar
  17. Elul, R.: Brain waves: intracellular recording and statistical analysis help clarify their physiological significance. Data Acquisition and Processing Biol. Med. 5, 93–115 (1968).Google Scholar
  18. Etevenon, P., and J. R. Boissier: Statistical amplitude analysis of the integrated electrocorticogram of un-restrained rats before and after prochlorpemazine. Neuropharmacology 10, 161–173 (1971).CrossRefGoogle Scholar
  19. Grastyan, E., and G. Karmos: The influence of hippocampal lesions on simple and delayed instrumental conditioned reflexes. In: Physiologie de L’Hippocampe, C.N.R.S., pp. 225–239, Paris (1962).Google Scholar
  20. Grastyan, E., J. Czopf, L. Angyan, and I. Szabo: The significance of subcortical motivational mechanismus in the organization of conditional connections. Acta physiol. Acad. Sci. hung., 26, 9–46 (1965).Google Scholar
  21. Grastyan, E., G. Karmos, L. Vereczkey, and L. Kellenyi: The hippocampal electrical correlates of the homeostatic regulation of motivation. Electroenceph. clin. Neurophysiol. 21, 34–53 (1966).Google Scholar
  22. Green, J. D., and A. Arduini: Hippocampal electrical activity in arousal. J. Neurophysiol. 17, 533–557 (1954).Google Scholar
  23. Grey-Walter, W.: Frequency analysis. In: Electroencephalography (D. Hill and G. Parr, eds.), pp. 87–90, MacDonald, London (1963).Google Scholar
  24. Grunewald, G., O. Simonova, and O. D. Creutzfeld: Différentielle EEG-Veränderungen bei visuomotorischen und kognitiven Tätigkeiten. Arch. Psych. Nervenk., 212, 46–69 (1968).CrossRefGoogle Scholar
  25. Hodos, W.: Facts and artefacts in the EEG and learning. EEG clin. Neurophysiol. 15, 540 (1963).Google Scholar
  26. Hughes, J. R.: Electroencephalography and learning. In: Progress in Learning Disabilities (R. Myklebust, ed.), p. 113, Grune and Stratton, New York (1969).Google Scholar
  27. Juel-Nielsen, N., and B. Hanvald: The electroencephalogram in uniovular twins brought un apart. Acta ganet. 8, 57–64 (1958).Google Scholar
  28. Jung, R.: Neurophysiologie und Psychiatrie. In: Psychiatrie der Gegenwart, Bd. 1/1A, pp. 325–928, Springer (1967).Google Scholar
  29. Jung, R., and A. E. Kornmüller: Eine Methodik der Ableitung lokalisierter Potential Schwankungen aus sub-cortikalen Hirngebieten. Arch. Psych. Nervenk. 109, 1–30 (1939).CrossRefGoogle Scholar
  30. Klee, M. R., K. Offenloch, and J. Tigges: Cross-correlation analysis of electroencephalographs potentials and slow membrane transients. Science 147, 519–521 (1965).CrossRefGoogle Scholar
  31. Klüver, H., and P. C. Bucy: Preliminary analysis of the functions of the temporal lobes in monkeys. Arch. Neurol. Psych. (Chic.) 42, 979–1000 (1939).Google Scholar
  32. Lopes Da Silva, F. H., and A. Kamp: Hippocampal theta frequency shifts and operant behaviour. Electroenceph. clin. Neurophysiol. 26, 133–143 (1969).CrossRefGoogle Scholar
  33. Milner, B.: Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales. In: Physiologie de L’Hippocampe, C.N.R.S., pp. 257–272, Paris (1962).Google Scholar
  34. Olds, M. W., and J. Olds: Approach-avoidance analysis of rat diencephalon. J. comp. Neurol. 120, 259–295 (1963).CrossRefGoogle Scholar
  35. Penfield, W.: Studies of the cerebral cortex of man. A review and an interpretation. In: Brain Mechanismus and Consciousness (J. E. Delafresnay, ed.), pp. 284–309, Blackwell, Oxford (1954).Google Scholar
  36. Penfield, W.: Functional localization in temporal and deep sylvian areas. Res. Publ. Ass. nerv. ment. Dis. 36, 210–226 (1958).Google Scholar
  37. Pickenhain, L., and F. Klingberg: Hippocampal slow wave activity as a correlate of basic behavioral mechanisms in the rat. Prog. Brain Res. 27, 218–227 (1967).CrossRefGoogle Scholar
  38. Radulovacki, M., and W. R. Adey: The hippocampus and the orienting reflex. Exp. Neurol. 12, 68–83 (1965).CrossRefGoogle Scholar
  39. Ramey, E. T.: Reversed lateral dominance in identical twins. J. exp. psychol. 23, 304–312 (1938).CrossRefGoogle Scholar
  40. Ramey, E. T.: Brain potentials and lateral dominance in identical twins. J. exp. psychol. 24, 21–39 (1939).CrossRefGoogle Scholar
  41. Thomas, G. J., and L. S. Otis: Effects of rhinencephalic lesions on maze learning in rats. J. comp, physiol. Psychol. 51, 161–166 (1958a).CrossRefGoogle Scholar
  42. Thomas, G. J., and L. S. Otis: Effects of rhinencephalic lesions on conditioning of avoidance respones in the rat. J. comp, physiol. Psychol. 51, 130–134 (1958b).CrossRefGoogle Scholar
  43. Ungher, J., and D. Psatta: Deficits de la mobilite des processus nerveux superieurs chez le chat avec des lesions de l’hippocampe. Rev. roum. Neurol. 2, No. 3, 137–238 (1965).Google Scholar
  44. Vanderwolf, C. H.: Hippocampal electrical activity and voluntary movement in the rat. Electroenceph. clin. Neurophysiol. 26, 407–418 (1969).CrossRefGoogle Scholar
  45. Vogel, F.: über die Erblichkeit des normalen Elektroence-phalogramms. Thieme, Stuttgart, 92 p. (1958).Google Scholar
  46. Yoshji, N., M. Shimokochi, K. Miyamoto, and M. Ito: Studies on the neural basis of bahvior by continuos frequency analysis of EEG. In: Progress in Brain Research, Vol. 21a (T. Tokizane and J. P. Schade, eds.), pp. 217–250, Elsevier, Amsterdam (1966).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • G. Dolce
    • 1
  • K. Offenloch
    • 1
  • W. G. Sannita
    • 1
  • H. Müller-Calgan
    • 1
  • H. Decker
    • 1
  1. 1.Neurophysiological Laboratory, Medical Research DepartmentE. MerckDarmstadtGermany

Personalised recommendations