Encephalotropic Drugs and Cerebral RNA Metabolism

  • Karl Kanig


Substances which are assumed to influence an impaired memory are also assumed to influence the nucleic acid metabolism of the brain. To investigate this relationship we used pyritinol, which on the basis of experimental and clinical observations is considered to be an encephalotrophic drug. The method we used enables the separation of DNA and four highly purified RNA-fractions. The metabolism of the “rapidly labelled” RNA-, of the rRNA- and of the tRNA-fractions was examined in order to investigate the influence of pyritinol on the rat brain. An oral dosage of 100 mg/kg, administered over several weeks, caused alterations of 32P-incorporation rate in the single RNA fractions. The 32P-incorporation of the “rapidly labelled” RNA increased, while the turnover of rRNA decreased. The turnover of tRNA showed no change. To prove the reproducibility of these results and their dependence on dosage and age of animals, we undertook further experiments with 200 and 400 mg/kg pyritinol. For comparison we examined the influence of pentobarbital narcosis and of one other encephalotrophic substance on the RNA metabolism The results of this study and some theoretical implications are discussed.


Incorporation Rate Sucrose Density Gradient Intracerebral Injection Nucleic Acid Metabolism derDeutschen Gesellschaft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, K., and S. Hoyer: Hirnstoffwechsel Untersuchungen unter der Behandlung mit Pyrithioxin. Dtsch. Z. Nervenheilk. 188, 200–209 (1966).CrossRefGoogle Scholar
  2. Bouvier, J. P., and B. Chupin: Beeinflussung der intellek-tuellen Leistung chronischer Cerebralsklerotiker durch Dusodril. Referat: Roland GmbH, Essen 1971Google Scholar
  3. Danielczyk, W.: Neue therapeutische Aspekte bei der Rehabilitation zerebraler Gefäßkranker. Therapiewoche 21, 307–311 (1971).Google Scholar
  4. Di Carlo, R., S. Edel, H. Randrianarisoa, and P. Mandel: Amphetamine and cerebral RNA metabolism. VII CINP Congress, Prag 1970, Abstracts, p. 117.Google Scholar
  5. Eichhorn, O.: Zur Behandlung der ischämischen Hirnschädigung Med. Welt (N.F.) 20, 2314–2317 (1969).Google Scholar
  6. Glassman, E.: The biochemistry of learning: and evaluation of the role of RNA and protein. Ann. Rev. Biochem. 38, 605–646 (1969).CrossRefGoogle Scholar
  7. Hyden, H., and P. W. Lange: A genetic stimulation with production of adenine-uracil rich RNA in neurons and glia learning. Naturwiss. 53, 64–70 (1966).CrossRefGoogle Scholar
  8. Jacob, M., J. Stevenin, R. Jund, C. Judes, and P. Mandel: Rapidly-labelled ribonucleic acids on brain. J. Neurochem. 13, 619–628 (1966).CrossRefGoogle Scholar
  9. Kanig, K., and W. Oesterle: The influence of encephalotropic substances on the nucleic acid metabolism of brain. Vortrag III. Neurobiologisches Sympos., Magdeburg, 5.–7.5.1971. In: Biochemical, Physiological and Pharmacological Aspects of Learning Processes. Series Ergebnisse derDeutschen Gesellschaft für experimentelle Medizin, VEB Verlag Volk und Gesundheit, Berlin 1972, in press.Google Scholar
  10. Kanig, K., W. Oesterle, and N. Rubly: Nucleinsäuren im Rattengehirn II. Stoffwechsel einzelner RNA-Fraktionen. Hoppe-Seyler’s Z. Physiol. Chem. 352, 977–983 (1971).CrossRefGoogle Scholar
  11. Künkel, H., and M. Westphal: Quantitative EEG analysis of pyrithioxin action. Pharmakopsychiatrie 3, 41–49 (1970).Google Scholar
  12. Mandel, P., T. Borkowski, S. Harth, and R. Mardell: Incorporation of P in ribonucleic acid of subcellular fractions of various regions of the rat central nervous system. J. Neurochem. 8, 126–138 (1961).CrossRefGoogle Scholar
  13. Oesterle, W., K. Kanig, W. Büchel, and A.-K. Nickel: Preparation of DNA and four different RNA species from rat brain. A new RNA fraction and a new characteristic of the various RNAs. J. Neurochem. 17, 1403–1419 (1970).CrossRefGoogle Scholar
  14. Oesterle, E., K. Kanig, and P. Johann: Nucleinsäuren im Rattengehirn I. I.-vivo-Markierungen mit 32Pi; Präparation von DNA und vier verschiedenen RNA-Fraktionen in einem Arbeitsgang. Hoppe-Seyler’s Z. Physiol. Chem. 352, 959–976 (1971).CrossRefGoogle Scholar
  15. Pöldinger, W., A. Gehring, and W. Sutter: Die Beschleuni-gung des Wirkungseintritts von Psychopharmaka durch Pyrithioxin. Arzneim. Forsch. (Drug. Res.) 20, 936–937 (1970).Google Scholar
  16. Quadbeck, G.: Erste experimentelle Untersuchungen zur Frage der Wirkung von Dusodril auf cerebrale Ernährung. Referat: Roland GmbH, Essen 1971.Google Scholar
  17. Quadbeck, G., H. R. Landmann, W. Sachsse, and I. Schmidt: Der Einfluß von Pyrithioxin auf die Blut-Hirn-Schranke. Med. exper. (Basel) 7, 144–154 (1962).Google Scholar
  18. Schönecker, B.: Der Einfluß von Pentobarbital auf den Nuclei nsäure-Stoffwechsel des Rattengehirns. Inaug. Diss. Med. Fak. Homburg/Saar, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Karl Kanig
    • 1
  1. 1.Abteilung für Neurochemie “J.L.W. Thudichum”Universitäts-Nervenklinik665 Homburg/SaarGermany (BRD)

Personalised recommendations