Advertisement

Radioactive Studies of Changes in Protein Metabolism by Adequate and Inadequate Stimulation in the Optic Tectum of Teleosts

  • Hinrich Rahmann

Abstract

The influence of different external stimuli (motor, electrical and light-pattern stimulation) on the protein metabolism of corresponding nerve structures in the fish brain was investigated by means of autoradiographic and biochemical techniques. 1. Following adequate motor stimulation it was demonstrated that the cerebellum is least affected in its RNA- and protein metabolism, while the valvula cerebelli and the optic tectum are extremely sensitive to an increase or inhibition in mobility. 2. Following electrical stimulation of the brain by implanted electrodes, either directly into the optic tectum or into the optic nerve, large differences could be de-monstrated in the incorporation of 3H-histidine into both structural and soluble proteins of the optic tectum. 3. The incorporation of 3H-histidine in the pericaryal layer of the optic tectum was investigated autoradio-graphically after light-pattern stimulation of one eye. The exposure of one eye to one narrow vertical slit of light produced one zone of marked increase of protein labelling to the contralateral tectum hemisphere; the exposure of two parallel slits caused two zones. These zones probably represent the extension of corresponding engrams. 4. These results, obtained by a combination of histological and biochemical techniques, make it possible to localize the site of metabolic changes in the brain following external stimulation. These changes are assumed to be involved in the process of memory formation.

Keywords

Electrical Stimulation Optic Nerve Protein Metabolism Crucian Carp Optic Tectum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Buser, P., and M. Dussardier: Organisation des projections de la rétine sur le lobe optique, étudiée chez quel-ques télêostêens. J. Physiol. (Paris) 45, 57–60 (1953).Google Scholar
  2. Chitre, V. S., S. P. Chopra, and G. P. Talwar: Changes in the RNA content of the brain during experimentally induced convulsions. J. Neurochem. 11, 439–448 (1964).CrossRefGoogle Scholar
  3. Edström, J. E.: Effects of increased motor activity on the dimensions and the staining properties of the neuron soma. J. Comp. Neurol. 107, 295–304 (1957).CrossRefGoogle Scholar
  4. Fiedler, D.: Degenerationen und Verhaltenseffekte nach Elektrokoagulationen im Gehirn von Fischen (Diplodus, Crenilabrus — Perciformes). Zool. Anz. Suppl. 30, 351–366 (1967).Google Scholar
  5. Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta Physiol. Scand. 17, 1–150 (1943).Google Scholar
  6. Hyden, H.: RNA — a functional characteristic of the neuron and its glia. Brain Function 11, 29–70 (1964).Google Scholar
  7. Jacobson, M., and R. M. Gaze: Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exper. Physiol. 49, 199–209 (1964).Google Scholar
  8. Jakoubek, B., and J. E. Edström: RNA changes in the Mauth-ner axon and myelin sheath after increased functional activity. J. Neurochem. 845–849 (1965).Google Scholar
  9. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall: Proteinmeasurement with the Fol in phenol reagent. J. Biol. Chem. 293, 265–275 (1951).Google Scholar
  10. Marain I, G., F. Carta, R. Franguelli, and M. Santori: Effect of monocular light-deprivation on leucine uptake in the retinae and the optic centres of the newborn rat. Exp. Eye Res. 6, 299–302 (1967).CrossRefGoogle Scholar
  11. Masai, H.: Comparative neurobiological studies on the glycogen distribution in the central nervous system of submammals. Yokohama Med. Bull. 12, 239–260 (1961).Google Scholar
  12. Meyer, D. L., D. Schott, and K. P. Schaefer: Reizversuche im Tectum opticum freischwimmender Kabeljaue bzw. Dorsche (Gadus Morrhua L.). Pflügers Arch. 314, 240–252 (1970).CrossRefGoogle Scholar
  13. Rahmann, H.: über den Einfluß adäquater Lichtreizung auf die biochemische und morphologische Ausprägung der Sehrinde der Maus. Z. Zellforsch. 67, 561–574 (1965).CrossRefGoogle Scholar
  14. Rahmann, H.: Darstellung des intraneuronalen Proteintransports vom Auge in das Tectum opticum und die Cerebrospinal flüssigkeit von Teleosteern nach intraokularer Injektion von 3H-Histidin. Naturwissenschaften 54, 174–175 (1967).CrossRefGoogle Scholar
  15. Rahmann, H.: Syntheseort und Ferntransport von Proteinen im Fischhirn. Z. Zellforsch. 86, 214–237 (1968).CrossRefGoogle Scholar
  16. Rahmann, H., and R. Hilbig: Autoradiographische Untersuchungen über Stoffwechsel unterschiede in verschiedenen Hirnstrukturen von Teleosteern sowie deren Beein-flußbarkeit nach motorischer Stimulation. Z. Zell forsch., im Druck.Google Scholar
  17. Rahmann, H., H. Rösner, and R. Wilhelm: Einfluß elektrischer Reizung auf den Proteinstoffwechsel des ZNS von Teleostiern. In Vorher., 1972.Google Scholar
  18. Rensch, B., and H. Rahmann: Autoradiographische Untersu-chungen über visuelle “Engramm”-Bildung bei Zahnkarpfen I. Pflügers Arch. ges. Physiol. 290, 158–166 (1966).CrossRefGoogle Scholar
  19. Rensch, B., H. Rahmann, and K. H. Skrzipek: Autoradiogra-phische Untersuchungen über visuelle “Engramm”-Bildung bei Fischen II. Pflügers Arch. ges. Physiol. 304, 242–252 (1968).CrossRefGoogle Scholar
  20. Schwassmann, H. O., and L. Krüger: Organization of the Visual projection upon the optic tectum of some fresh-water fish. J. comp. Neurol. 124, 113–126 (1965).CrossRefGoogle Scholar
  21. Singh, U. B., and G. P. Talwar: Effect of the flicker frequency of light and other factors on the synthesis of proteins on the occipital cortex of monkey. J. Neurochem. 14, 675–680 (1967).CrossRefGoogle Scholar
  22. Skrzipek, K. H: Die Proteinsynthese des Tectum opticum in Abhängigkeit von der Gestalt intermittierender Lichtmuster bei Carassius carassius L. (Pisces). J. Hirnforsch. 11, 407–417 (1969).Google Scholar
  23. Talwar, G. P., S. P. Chopra, B. K. Goel, and B. D. Monte: Correlation of the functional activity of the brain with metabolic parameters III. J. Neurochem. 13, 109–116 (1966).CrossRefGoogle Scholar
  24. Vanegas, H., E. Essayag-Millan, and M. Laufer: Response of the optic tectum to stimulation of the optic nerve in the teleost Eugerres plumieri. Brain Research 31, 107–118 (1971).CrossRefGoogle Scholar
  25. Watson, W. E.: An autoradiographic study of the incorporation of nucleic acid precursors by neurons and glia through nerve stimulation. J. Physiol. 180, 754–765 (1965).Google Scholar
  26. Wawrzyniak, M.: Chemoarchitektonische Studien am Tectum opticum von Teleostiern unter normalen und experimentellen Bedingungen. Z. Zellforsch. 58, 234–264 (1962).CrossRefGoogle Scholar
  27. Wegener, G.: Autoradiographische Untersuchungen über gesteigerte Proteinsynthese im Tectum opticum von Fröschen nach optischer Reizung. Exper. Brain Res. 10, 363–379 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Hinrich Rahmann
    • 1
  1. 1.Department of NeurobiologyZoological Institute of the University44 MünsterW. Germany

Personalised recommendations