Advertisement

Evidence for Molecular Coding of Neural Information

  • Georges Ungar

Abstract

The essential significance of the chemical transfer of learning experiments is that they provide bioassay methods for the isolation of behavior-inducing substances. The results obtained by these methods have provided evidence for a molecular code of neural information. Once the specific behavior-inducing substances are chemically defined they can be further investigated by appropriate microanalytical techniques. It is hoped that this general approach will allow within the next few years the identification of several information-carrying molecules and thus open the way to a systematic study of the molecular code.

Keywords

Brain Extract Avoidance Experiment Color Discrimination Morphine Tolerance Chemical Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Best, R. M.: Encoding of memory in the neuron. Psychol. Rep. 22, 107–155 (1968).CrossRefGoogle Scholar
  2. Booth, D. A.: Neurochemical changes correlated with learning and memory retention. In: Molecular Mechanisms in Memory and Learning (G. Ungar, ed.), pp. 1–57, Plenum Press, New York (1970).Google Scholar
  3. Brindley, G. S.: The classification of modifiable synapses and their use in models for conditioning. Proc. Roy. Soc. B. 168, 361–376 (1967).CrossRefGoogle Scholar
  4. Bryant, R. C., N. N. Santos, and W. L. Byrne: Synthetic scotophobin in goldfish: specificity and effect on learning. Science 177, 635–636 (1972).CrossRefGoogle Scholar
  5. Cohen, H. D.: Learning, memory, and metabolic inhibitors. In: Molecular Mechanisms in Memory and Learning (G. Ungar, ed.), pp. 59–70, Plenum Press, New York (1970).Google Scholar
  6. Dyal, J. A.: Transfer of behavioural bias and learning enhancement: A critique of specificity experiments. In: Biology of Memory (G. Adam, ed.), pp. 145–161, Akadémiai Kiadò, Budapest (1971).CrossRefGoogle Scholar
  7. Fjerdingstad, E. J., ed. Chemical Transfer of Learned Information, North-Holland Publishing Company, Amsterdam-London (1971).Google Scholar
  8. Foerster, H.: Das Gedächtnis; Eine quantenmechanische Untersuchung. F. Deuticke, Vienna (1948).Google Scholar
  9. Garber, B. B., and A. A. Moscona: Reconstruction of brain tissue from cell suspensions I and II. Develop. Biol. 27, 217–234 amp; 235–243 (1972).Google Scholar
  10. Gaze, R. M.: The Formation of Nerve Connections. Academic Press, London-New York (1970).Google Scholar
  11. Gerard, R. W., and J. W. Duyff, ed. Information Processing in the Nervous System. Excerpta Medica, Amsterdam (1962).Google Scholar
  12. Guttman, H. N., G. Matwyshyn, and G. H. Warriner: III, Synthetic scotophobin-mediated passive transfer of dark avoidance. Nature New Biol. 235, 26–27 (1972).Google Scholar
  13. Halstead, W. C., and W. B. Rucker: The molecular basis of memory. In: Molecular Approaches to Learning and Memory (W. L. Byrne, ed.), pp. 1–14, Academic Press, New York (1970).Google Scholar
  14. Hebb, D. O.: The Organization of Behavior. Wiley, New York (1949).Google Scholar
  15. Heltzel, J. A., R.A. King, and G. Ungar: Possible molecular coding for a learned motor adaptation in the goldfish. Abstract of presentation to Society for Neuroscience 2nd Annual Meeting (1972).Google Scholar
  16. Hyden, H.: Biochemical changes in glial cells and nerve cells at varying activity. In: Biochemistry of the Central Nervous System (Fourth International Congress of Biochemistry), pp. 64–89, Pergamon Press, New York-London (1959).Google Scholar
  17. Jacobson, M.: Developmental Neurobiology, Holt, Rinehart and Winston, New York (1970).Google Scholar
  18. Katz, J. J., and W. C. Halstead: Protein organization and mental function. Comp. Psychol. Monog. 20, 1–38 (1950).Google Scholar
  19. Landauer, T. K.: Two hypotheses concerning the biochemical basis of memory. Psychol. Rev. 71, 167–179 (1964).CrossRefGoogle Scholar
  20. Mcconnell, J. V.: A tape recorder theory of memory. Worm Runner’s Digest 7 (2), 3–10 (1965).Google Scholar
  21. Mcconnell, J. V., and D. Malin (in this volume).Google Scholar
  22. Malin, D., and H. N. Guttman: Action of synthetic scotophobin in mice. Science (in press).Google Scholar
  23. Monne, L.: Functioning of the cytoplasm. Advan. Enzymol. 8, 1–69 (1948).Google Scholar
  24. Moscona, M. H., and A. A. Moscona: Inhibition of adhesiveness and aggregation of dissociated cells by inhibitors of protein and RNA synthesis. Science 142, 1070–1073 (1963).CrossRefGoogle Scholar
  25. Neuhoff, V., F. Von Der Haar, E. Schlimme, and M. Weise: Zweidimensionale Chromatographie von Dansyl-Aminosäuren in pico-Mol-Bereich, angewandt zur direkten Charakterisierung von Transfer-Ribonucleinsäuren. Hoppe-Seyler Z. Physiol. Chem. 350, 121–128 (1969).CrossRefGoogle Scholar
  26. Orlowsy, M., and A. Szewczuk: Determination of y-glutamyl transpeptidase in human serum and urine. Clin. Chim. Acta 7, 755–760 (1962).CrossRefGoogle Scholar
  27. Perkel, D. H., and T. H. Bullock: Neural coding. Neurosci. Res. Prog. Bull. 6, 221–343 (1968).Google Scholar
  28. Robinson, C. E.: A chemical model of long-term memory and recall. In: Molecular Basis of Some Aspects of Mental Activity (o. Walaas, ed.), Vol. 1, pp. 29–35, Academic Press, New York (1966).Google Scholar
  29. Rosenblatt, F.: Recent work on theoretical models of biological memory. In: Computer and Information Sciences (J. Tou, ed.), Vol. 2, pp. 33–56, Spartan Books, Washington, D.C. (1967).Google Scholar
  30. Schmitt, F. O.: Macromolecular Specificity and Biological Memory. MIT Press, Cambridge, Massachusetts (1962).Google Scholar
  31. Shashoua, V. E.: RNA changes in goldfish brain during learning. Nature 217, 238–240 (1968).CrossRefGoogle Scholar
  32. Sperry, R. W.: Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Nat. Acad. Sci. U.S.A. 50, 703–710 (1963).CrossRefGoogle Scholar
  33. Szilard, L.: On memory and recall. Proc. Nat. Acad. Sci. U.S.A. EH, 1092–1099 (1964).Google Scholar
  34. Thines, G., and G. F. Domagk (in this volume).Google Scholar
  35. Ungar, G.: Molecular mechanisms in learning. Perspectives Biol. Med. 11, 217–232 (1968).Google Scholar
  36. Ungar, G.: Role of proteins and peptides in learning and memory. In: Molecular Mechanisms in Memory and Learning (G. Ungar, ed.), pp. 149–175, Plenum Press, New York (1970a).Google Scholar
  37. Ungar, G.: Molecular mechanisms in information processing. Int. Rev. Neurobiol. 13, 223–253 (1970b).CrossRefGoogle Scholar
  38. Ungar, G.: Chemical transfer of acquired information. In: Methods in Pharmacology (A. Schwartz, ed.), Vol. 1, pp. 479–513, Appleton-Century Crofts, New York (1971a).Google Scholar
  39. Ungar, G.: Bioassays for the chemical correlates of acquired information. In: Chemical Transfer of Learned Information (E. J. Fjerdingstad, ed.), pp. 31–49, North-Holland Publishing Company, Amsterdam-London (1971b).Google Scholar
  40. Ungar, G.: Le code moléculaire de la memoire. La Recherche 3, 19–27 (1972a).Google Scholar
  41. Ungar, G.: Molecular organization of neural information processing. In: The Structure and Function of Nervous Tissue (G. H. Bourne, ed.), Vol. 4, p. 215–247, Academic Press, New York (1972b).Google Scholar
  42. Ungar, G.: Molecular coding of information in the nervous system. Naturwissenschaften 59, 85–91 (1972c).CrossRefGoogle Scholar
  43. Ungar, G., and S. R. Burzynski: Detection of a behavior-inducing peptide (scotophobin) in brain by ultramicro-analytical method. Fed. Proc. 31, 398Abs (1972).Google Scholar
  44. Ungar, G., and G. Chapouthier: Mécanismes moléculaires de l’utilisation de l’information par le cerveau. L’Année Psychologique 71, 153–183 (1971).CrossRefGoogle Scholar
  45. Ungar, G., and M. Cohen: Induction of morphine tolerance by material extracted from brain of tolerant animals. Int. J. Neuropharmacol. 5, 183–192 (1966).CrossRefGoogle Scholar
  46. Ungar, G., and C. Oceguerra-Navarro: Transfer of habituation by material extracted from brain. Nature 207, 301–302 (1965).CrossRefGoogle Scholar
  47. Ungar, G., L. Galvan, and R. H. Clark: Chemical transfer of learned fear. Nature 217, 1259–1261 (1968).CrossRefGoogle Scholar
  48. Ungar, G., D. M. Desiderio, and W. Parr: Isolation, identification and synthesis of a specific-behavior-inducing brain peptide. Nature 238, 198–202 (1972a).CrossRefGoogle Scholar
  49. Ungar, G., L. Galvan, and G. Chapouthier: Possible chemical coding of color discrimination in goldfish brain Experientia in press (1972b).Google Scholar
  50. Zippel, H. P., G. F. Domagk: Versuche zur chemischen Gedächt-nisübertragung von farbdressierten Goldfischen auf undress ierte Tiere. Experientia 25, 938–940 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Georges Ungar
    • 1
  1. 1.Baylor College of MedicineHoustonUSA

Personalised recommendations