Neural Control of Input into Long Term Memory: Limbic System and Amnestic Syndrome in Man

  • H. H. Kornhuber


The importance of different brain regions, in particular the limbic system, in selecting and transforming external information either for storage in short term memory or transmission into long term memory is described. Various experimental findings in animals as well as observations on human patients are discussed from a neurophysiological and neurological point of view.


Frontal Lobe Short Term Memory Limbic System Term Memory Frontal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K.: Comparative anatomy of the frontal cortex and thalamocortical connections. In: The Frontal Granular Cortex and Behavior (J. M. Warren and K. Akert, eds.), pp. 372–396, McGraw-Hill Book Comp., New York, San Francisco, Toronto, London (1964).Google Scholar
  2. Benton, A. L.: Differential behavioral effects in frontal lobe disease. Neuropsychologic 6, 53–60 (1968).CrossRefGoogle Scholar
  3. Bianchi, L.: The mechanism of the brain and the function of the frontal lobes. (Transl. by J. H. MacDonald). Wood and Co., New York (1922).Google Scholar
  4. Butters, N., and D. Pandya: Retention of delayed alternation: effect of selective lesions of sulcus principalis. Science 165, 1271–1273 (1969).CrossRefGoogle Scholar
  5. Butters, N., J. Samuels, H. Goodglass, and B. Brody: Short term visual and auditory memory disorders after parietal and frontal lobe damage. Cortex 6, 440–459 (1970).Google Scholar
  6. Ebbinghaus, H.: über das Gedächtnis. Untersuchungen zur experimentellen Psychologie. Duncker und Humblot, Leipzig (1885).Google Scholar
  7. Eibl-Eibesfeld, J.: Grundriß der vergleichenden Verhaltensforschung. Ethologie. Piper, München (1967).Google Scholar
  8. Gamper, E.: Schlaf — Delirium tremens — Korsakow’sches Syndrom. Zbl. Neurol. 51, 236–239 (1929).Google Scholar
  9. Green, J. D., and W. R. Adey: Electrophysiological studies of hippocampal connections and excitability. EEG clinical Neurophys. 8 245–262 (1956).CrossRefGoogle Scholar
  10. Gross, C. E., and L. Weiskrantz: Some changes in behavior produced by lateral frontal lesions in the Macaque. In: The Frontal Granular Cortex and Behavior ( J. M. Warren and K. Akert, eds.), McGraw-Hill Book Comp., New York, San Francisco, Toronto, London (1964).Google Scholar
  11. Hassler, R., and T. Riechert: über einen Fall von doppelseitiger Fornicotomie bei sogenannter temporaler Epilipsie. Acta Neurochir. 5, 330–340 (1957).CrossRefGoogle Scholar
  12. Hull, C. L.: Principles of behavior. An introduction to behavior theory. Appleton Crofts, N. Y. (1943).Google Scholar
  13. Jacobsen, C. S.: Functions of the frontal association area in primates. AMA Arch. Neurol. Psychiat. 33, 558–569 (1935).Google Scholar
  14. Jacobsen, C. S.: Studies of cerebral function in I. The functions of the frontal association areas in monkeys. Comp, psychol, monogr. 13, 3–60 (1936).Google Scholar
  15. Kornhuber, H. H.: Zur Bedeutung multisensorischer Integration im Nervensystem. Dtsch. Zschr. Nervenheilk. 187, 478–484 (1965).CrossRefGoogle Scholar
  16. Kornhuber, H. H.: Zur Funktion der Lust. Antrittsvorlesung, Freiburg i. Br., 1963. In: Psychiatrie der Gegenwart B / Teil A (H. W. Gruhle, R. Jung, W. Mayer-Gross, M. Müller, Hersg.), zit. nach R. Jung: Neurophysiologie und Psychiatrie, S. 580, Springer, Berlin, Heidelberg, New York (1967).Google Scholar
  17. Kornhuber, H. H., and J. S. Da Fonseca: Optovestibular integration in the cat’s cortex: a study of sensory convergence on cortical neurons. In: The Oculomotor System (M. B. Bender, ed.), pp. 239–277, Hoeber, New York (1964).Google Scholar
  18. Küpfmüller, K.: Informationsverarbeitung durch den Menschen. Nachrichtentechn. Z. 12, 68–74 (1958).Google Scholar
  19. Kopfmüller, K.: Grundlagen der Informationstheorie und der Kybernetik. In: Physiologie des Menschen, Bd. 10: Allgemeine Neurophysiologie (O. H. Gauer, K. Kramer und J. Jung, Hrsg.), pp. 195–231, Urban und Schwarzenberg, München, Berlin, Wien (1971).Google Scholar
  20. Mayers, G. C.: A study in incidental memory. Arch. Psychol. N.Y. 5, Nr. 26 (1913).Google Scholar
  21. Milner, B.: Effects of different brain lesions on card sorting. The role of frontal lobes. AMA Arch. Neurol. 9, 90–100 (1963).CrossRefGoogle Scholar
  22. Milner, B.: Visually-guided maze learning in man: effects of bilateral hippocampal, bilateral frontal and unilateral cerebral lesions. Neuropsychologia 3, 317–338 (1965).CrossRefGoogle Scholar
  23. Niemer, W. T., E. F. Goodfellow, and J. Speaker: Neocortico-limbic relations in the cat. EEG clin. Neurophysiol. 15, 827–838 (1963).CrossRefGoogle Scholar
  24. Pakkenberg, H.: The number of nerve cells in the cerebral cortex of man. J. comp. Neur. 128, 17–20 (1966).CrossRefGoogle Scholar
  25. Pandya, D. N., P. Dye, and N. Butters: Efferent cortico-cortical projections of the prefrontal cortex in the Rhesus monkey. Brain Res. 31, 35–46 (1971).CrossRefGoogle Scholar
  26. Pandya, D. N., and H. G. J. M. Kuypers: Cortico-cortical connections in the Rhesus monkey. Brain Res. 13, 13–36 (1969).CrossRefGoogle Scholar
  27. Papez, J. W.: A proposed mechanism of emotion. AMA Arch. Neurol. Psychiat. 38, 725–743 (1937).Google Scholar
  28. Penfield, W., and B. Milner: Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch. Neurol. Psychiat. 79, 475–497 (1958).Google Scholar
  29. Pribram, K. A., W. A. Wilson, and J. Connors: Effects of lesions of the medial forebrain on alternation behavior of Rhesus monkeys. Exp. Neurol. 6, 36–47 (1962).CrossRefGoogle Scholar
  30. Richter, C. P.: Total self regulatory functions in animals and human beings. Harvey Lect. 1942–43, p. 63–103.Google Scholar
  31. Rossvold, H. E., and M. K. Szwarcbart: Neural structures involved in delayed-response performance. In: The Frontal Granular Cortex and Behavior (J. M. Warren and K. Akert, eds.), pp. 2–15, McGraw-Hill Book Comp., New York, San Francisco, Toronto, London (1964).Google Scholar
  32. Schaefer, E.: Das menschliche Gedächtnis als Informations-speicher. Elektronische Rundschau 14, 79–84 (1960).Google Scholar
  33. Scoville, W. B., and B. Milner: Loss of recent memory after bilateral hippocampal lesions. J. Neurol., Neurosurg. Psychiat. 20, 11–21 (1957).CrossRefGoogle Scholar
  34. Sontag, L. W., C. T. Baker, and V. L. Nelson: Mental growth and personality development: A longitudinal study. Monogr. Soc. Res. Develop. 23, 61 (1958).Google Scholar
  35. Thompson, R.: A note on cortical and subcortical injuries and avoidance learning by rats. In: The Frontal Granular Cortex and Behavior ( J. M. Warren and K. Akert, eds.), McGraw-Hill Book Comp., New York, San Francisco, Toronto, London (1964).Google Scholar
  36. Victor, M., R. D. Adams, and G. H. Collins: The Wernicke-Korsakoff-Syndrome. Blackwell scientific publications, Oxford (1971).Google Scholar
  37. Warren, J. M., and K. Akert (eds.): The frontal granular cortex and behavior. McGraw-Hill Book Comp., New York, San Francisco, Toronto, London (1964).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. H. Kornhuber
    • 1
  1. 1.Universität Ulm79 Ulm/DonauW. Germany

Personalised recommendations