Advertisement

Abstract

Bond energies of the carbon-sulfur double bond in carbon disulfide or in carbon oxysulfide and the carbon-oxygen double bond in carbon dioxide are 128 and 192 kcal/mole, respectively. Since bond energies of general carbon-sulfur and carbon-oxygen single bonds are 65 and 85.5 kcal/mole respectively, there exists more than 40 kcal/mole of difference between carbon-sulfur and carbon-oxygen π-bond energies1. The difference is undoubtedly due to the low efficiency of 2p-3p π-overlapping in comparison with that of 2p-2p. Because of the inherent antibonding interactions, as shown in Fig.5.1, π-bonds from 2p and 3p orbitals are less favorable than from two 2p orbitals. The difference in bond energies of general carbon-carbon single and double bonds is 60–65 kcal/mole, which is comparable to that of carbon-sulfur bonding. This indicates that the resonance energy in a thiocarbonyl group is great enough to compensate for the unfavorable energies of 2p3p π-overlapping. Note that no carbon-silicon double bond has been found yet in stable compounds.

Fig.5.1

Schematic representation of 2p-2p and 2p-3p π-bondings.

Keywords

Dimethyl Acetylene Dicarboxylate Oxygen Analogue Thione Form Thiocarbonyl Group Thiocarboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.L. Cottrell, “The Strength of Chemical Bonds,” 2nd Ed., (Butterworths Pub., London, 1959), pp. 275–276.Google Scholar
  2. 2.
    L. Pauling, “The Nature of the Chemical Bond,” 3rd Ed., (Cornell Univ. Press, Ithaca, N.Y., 1960), p.90.Google Scholar
  3. 3.
    H. Lumbroso and C. Andrieu, Bull. Soc. Chim. France, 3201 (1966).Google Scholar
  4. 4.
    S. Scheithauer and R. Mayer, Chem. Ber., 100, 1413 (1967).Google Scholar
  5. 5.
    U. Schmidt, Chem. Ber., 100, 3825 (1967).Google Scholar
  6. 6.
    J. Morgenstern and R. Mayer, J. prak. Chem., 34, 116 (1966).Google Scholar
  7. 7.
    J. Fabian and R. Mayer, Spectrochim. Acta, 20, 299 (1964).Google Scholar
  8. 8.
    A. Gero, J. Org. Chem., 19, 1960 (1954).Google Scholar
  9. 9.
    D. Kunz, S. Scheithauer, S. Bleisch, and R. Mayer, J. prak. Chem., 312, 426 (1970).Google Scholar
  10. 10.
    A.R. Katritzky and J.M. Lagowski, Advan. Heterocyclic Chem., 1, 339 (1963).Google Scholar
  11. 11.
    T. Mukaiyama, R. Matsueda, and M. Suzuki, Tetrahedron Lett., 1901 (1970): cf also T. Mukaiyama and M. Hashimoto, Bull Chem. Soc. Jap., 44, 196 (1971).Google Scholar
  12. 12.
    J. Newman Jr. and L.B. Young, J. Phys. Chem., 69, 2570 (1965).Google Scholar
  13. 13.
    G. Klose, Ph. Thomas, E. Uhlemann, and J. Märki, Tetrahedron, 22, 2695 (1966).Google Scholar
  14. 14.
    (a) M. Baldwin, A. Kirkien-Konasiewicz, A.G. London, A. Maccoll, and D. Smith, Chem. Commun., 574 (1966); (b) M. Baldwin, A. Maccoll, A. Kirkien-Konasiewicz, and B. Saville, Chem. and Ind., (London) 286 (1966).Google Scholar
  15. 15.
    L. Kaper, J.U. Veenland, and Th. J. de Boer, Spectrochim. Acta, (A), 23, 2605 (1967).Google Scholar
  16. 16.
    O. Korver, J.U. Veenland, and Th. J. de Boer, Rec. trav. chim. Pays-Bas, 84, 310 (1965).Google Scholar
  17. 17.
    A. Schönberg and A. Wagner, in Houben-Weyl: “Methoden der Organischen Chemie,” Vol. 9 (1954).Google Scholar
  18. 18.
    R.B. Woodward, et al., J. Amer. Chem. Soc., 82, 3800 (1960).Google Scholar
  19. 19.
    D.M. McKinnon and J.M. Buchshriber, Can. J. Chem., 49, 3299 (1971).Google Scholar
  20. 20.
    B.F. Gofton and E.A. Braude, Org. Synth., Coll, 4, 927 (1963).Google Scholar
  21. 21.
    P.C. Ray, Nature, 134, 1010 (1934).Google Scholar
  22. 22.
    D.C. Sen, J. Indian Chem. Soc., 12, 647 (1935);Google Scholar
  23. 22.
    D.C. Sen, Chem. Zbl., 1, 4916 (1936).Google Scholar
  24. 23.
    S. Bleisch and R. Mayer, Chem. Ber., 100, 93 (1967).Google Scholar
  25. 24.
    R. Mayer and H. Berthold, Chem. Ber., 96, 3096 (1963).Google Scholar
  26. 25.
    H. Staudinger and H. Freudenberger, Org. Synth., Coll., 2, 573 (1948).Google Scholar
  27. 26.
    A. Schönberg and E. Frese, Chem. Ber., 101, 694, 701 (1968).Google Scholar
  28. 27.
    L. Legrand, Bull. Soc Chim. France, 1599 (1959).Google Scholar
  29. 28.
    C. Andrieu, Y. Mollier, and N. Lozac’h, ibid., 2457 (1965).Google Scholar
  30. 29.
    A. Ceccon, U. Tonellato, and U. Miotti, Chem. Commun., 586 (1966).Google Scholar
  31. 30.
    L. Gattermann, Chem. Ber., 28, 2869 (1895).Google Scholar
  32. 31.
    A. Senning, Acta Chem. Scand., 17, 2570 (1963).Google Scholar
  33. 32.
    A. Schönberg and W. Asher, J. Chem. Soc., 272 (1942).Google Scholar
  34. 33.
    A. Mustafa and M.K. Hilmy, Science, 114, 526 (1951).Google Scholar
  35. 34.
    W.J. Middleton, E.G. Howard, and W.H. Sharkey, J. Org. Chem., 30, 1375 (1965).Google Scholar
  36. 35.
    (a) M. Matsui, Mem. Coll. Sci. Univ. Kyoto, B1, 285 (1908);Google Scholar
  37. 35.
    (b) M. Matsui, Mem. Coll. Sci. Univ. Kyoto, 3, 247 (1912);Google Scholar
  38. 35.
    (c) Y. Sakurada, Mem. Coll. Sci. Univ. Kyoto, 9, 237 (1926);Google Scholar
  39. 35.
    (d) Y. Sakurada, Mem. Coll. Sci. Univ. Kyoto, 10, 79 (1926).Google Scholar
  40. 36.
    U. Schmidt, E. Heymann, and K. Kabitzke, Chem. Ber., 96, 1478 (1963).Google Scholar
  41. 37.
    A. Ohno, T. Koizumi, and G. Tsuchihashi, Tetrahedron Lett., 2083 (1968).Google Scholar
  42. 38.
    J.M. Lalancette and Y. Beauregard, ibid., 5169 (1967).Google Scholar
  43. 39.
    (a) S.K. Mitra, J. Indian Chem. Soc., 10, 71 (1933);Google Scholar
  44. 39a.
    S.K. Mitra, Chem. Abstr., 27, 3914 (1933);Google Scholar
  45. 39b.
    (b) S.K. Mitra, Chem. Abstr., 10, 491 (1933);Google Scholar
  46. 39c.
    S.K. Mitra, Chem. Abstr., 28, 1330 (1934).Google Scholar
  47. 40.
    R. Mayer, S. Scheithauer, and D. Kunz, Chem. Ber., 99, 1393 (1966).Google Scholar
  48. 41.
    H.J. Hedgley and H.G. Fletcher Jr., J. Org. Chem., 30, 1282 (1965).Google Scholar
  49. 42.
    H.E. Wijers, C.H.D. van Ginkel, L. Brandsma, and J.F. Arens, Rec. trav. chim. Pays-Bas, 86, 907 (1967).Google Scholar
  50. 43.
    P.J.W. Schuijl, L. Brandsma, and J.F. Arens, Rec. trav. chim. Pays-Bas, 85, 889 (1966).Google Scholar
  51. 44.
    W. Walter and K.D. Bode, Angew. Chem. Int. Ed., 5, 447 (1966).Google Scholar
  52. 45.
    E.E. Gilbert, E.J. Rumanowski, and P.E. Newallis, J. Chem. Eng. Data, 13, 130 (1968).Google Scholar
  53. 46.
    For reviews, see (a) M. Carmack, Org. Reactions, 3, 83 (1946); (b) J. March, “Advanced Organic Chemistry,” (McGraw-Hill Book Co., New York, N.Y., 1968), pp. 910–911 and references cited therein.Google Scholar
  54. 47.
    R. Mayer, “Organosulfur Chemistry,” M.J. Janssen, Ed., (Interscience Pub., New York, N.Y., 1967), p. 219.Google Scholar
  55. 48.
    H. Mills and P.L. Robinson, J. Chem. Soc., 2330 (1928).Google Scholar
  56. 49.
    E.J. Corey and R.A.E. Winter, J. Amer. Chem. Soc., 85, 2677 (1963).Google Scholar
  57. 50.
    For a review, see R. Mayer, J. Morgenstern, and J. Fabian, Angew. Chem. Int. Ed., 3, 277 (1964).Google Scholar
  58. 51.
    M.L. Bender, Chem. Rev., 60, 53 (1960).Google Scholar
  59. 52.
    (a) S.G. Smith and M. O’Leary,J. Org. Chem., 28, 2825 (1963); (b) S.G. Smith and R.J. Feldt, ibid., 33, 1022 (1968).Google Scholar
  60. 53.
    S. Hauptmann, E. Uhlemann, and L. Widmann, J. prak. Chem., 38, 101 (1968).Google Scholar
  61. 54.
    J.C. Powers and F.H. Westheimer, J. Amer. Chem. Soc., 82, 5431 (1960).Google Scholar
  62. 55.
    R.H. Abeles, R.F. Hutton, and F.H. Westheimer, J. Amer. Chem. Soc., 79, 712 (1957).Google Scholar
  63. 56.
    A. Ohno and N. Kito, Chem. Lett. (Tokyo), in press: cf. also J.J. Steffens and D.M. Chipman, J.Amer. Chem. Soc., 93, 6694 (1971).Google Scholar
  64. 57.
    R.M. Elofson, F.F. Gadallah, and L.A. Gadallah, Can. J. Chem., 47, 3979 (1969).Google Scholar
  65. 58.
    G. Sartori and C. Furlani, Ann. Chim. (Rome), 44, 95 (1954).Google Scholar
  66. 59.
    A. Schönberg, A. Rosenbach, and O. Schütz, Ann. Chem., 454, 37 (1927).Google Scholar
  67. 60.
    E. Campaigne, in “Chemistry of the Carbonyl Group,” S. Patai, Ed., (Interscience Pub., New York, N.Y., 1966), pp. 917–959.Google Scholar
  68. 61.
    (a) P. Beak and J.W. Worley, J. Amer. Chem. Soc., 94, 597 (1972); (b) P. Beak and J.W. Worley, ibid., 92, 4142 (1970).Google Scholar
  69. 62.
    W.J. Middleton and W.H. Sharkey, J. Org. Chem., 30, 1384 (1965).Google Scholar
  70. 63.
    W.J. Middleton, E.G. Howard, and W.H. Sharkey, J. Amer. Chem. Soc., 83, 2589 (1961).Google Scholar
  71. 64.
    Y. Minoura and S. Tsuboi, Kogyo Kagaku Zasshi, 70, 1955 (1967) (in Japanese).Google Scholar
  72. 65.
    (a) D.C. Sen, Sci. and Cult., 2, 582 (1936);Google Scholar
  73. 65a.
    D.C. Sen, Chem. Zbl., 2, 972 (1936);Google Scholar
  74. 65.
    (b) D.C. Sen, Chem. Zbl., 4, 134 (1938); Chem. Abstr., 33, 555 (1939); (C) D.C. Sen, J. Indian Chem. Soc., 13, 268 (1936); Chem. Abstr., 30, 6340 (1936); (d) D.C. Sen, ibid., 13, 523 (1936); Chem. Abstr., 31, 1384 (1937).Google Scholar
  75. 66.
    (a) S.K. Mitra, Chem. Abstr., 15, 31 (1938);Google Scholar
  76. 66b.
    S.K. Mitra, Chem. Abstr., 32, 4945 (1938); (b) S.K. Mitra, ibid., 15, 129 (1938); Chem. Abstr., 32, 7042 (1938); (c) K. Chandra, N.K. Chakrabarty, and S.K. Mitra, ibid., 19, 139 (1942); Chem. Abstr., 38, 4951 (1944).Google Scholar
  77. 67.
    D.C. Sen, Sci. and Cult, 1, 435 (1935);Google Scholar
  78. 67.
    D.C. Sen, Chem. Zbl., 1, 4015 (1936).Google Scholar
  79. 68.
    D.C. Sen, Chem. Zbl., 1, 158 (1935);Google Scholar
  80. 68a.
    D.C. Sen, Chem. Zbl, 1, 4916 (1936).Google Scholar
  81. 69.
    D.C. Sen,J. Indian Chem. Soc., 12, 751 (1935);Google Scholar
  82. 69a.
    D.C. Sen,Chem. Abstr., 30, 3806 (1936).Google Scholar
  83. 70.
    Y.G. Gololov and T.F. Dmitrieva, Zh. Org. Khim., 2, 2260 (1966);Google Scholar
  84. 70.
    Y.G. Gololov and T.F. Dmitrieva, J. Org. Chem. USSR, 2, 2219 (1966).Google Scholar
  85. 71.
    P.J.W. Schuijl and L. Brandsma, Rec. trav. chim. Pays-Bas, 87, 929 (1968).Google Scholar
  86. 72.
    E.J. Smutny, J. Amer. Chem. Soc., 91, 208 (1969).Google Scholar
  87. 73.
    E.J. Smutny and W. Turner, Tetrahedron, 23, 3785 (1967).Google Scholar
  88. 74.
    H.L. Wheeler and B. Barnes,J. Amer. Chem. Soc., 22, 141 (1899).Google Scholar
  89. 75.
    L. Field and J.D. Buckman, J. Org. Chem., 32, 3467 (1967).Google Scholar
  90. 76.
    G.G. Urquhart, J.W. Gates Jr., and R. Conner, Org. Synth., Coll. 3, 363 (1955).Google Scholar
  91. 77.
    W. Madelung, J. prak. Chem., [2], 114, 25 (1926).Google Scholar
  92. 78.
    G. Hahn, Chem. Ber., 62, 2485 (1929).Google Scholar
  93. 79.
    For a discussion, see E. Campaigne, Chem. Rev., 39, 1 (1946).Google Scholar
  94. 80.
    G. Laban, J. Fabian, and R. Mayer, Z. Chem., 8, 414 (1968).Google Scholar
  95. 81.
    D.C Dittmer and E.S. Whitman. J. Org. Chem., 34, 2004 (1969).Google Scholar
  96. 82.
    T. Sasaki, K. Kanematsu, and K. Shoji, Tetrahedron Lett., 2371 (1969).Google Scholar
  97. 83.
    Y. Kishida and A. Terada, Chem. Pharm. Bull. (Tokyo), 16, 1351 (1968).Google Scholar
  98. 84.
    A. Schönberg, L.v. Vargha, and W. Paul, Ann. Chem., 483, 107 (1930).Google Scholar
  99. 85.
    A. Schönberg and L.v. Vargha, Chem. Ber., 63, 178 (1930).Google Scholar
  100. 86.
    H.R. Al-Kazimi, D.S. Tarbell and D. Plant, J. Amer. Chem. Soc., 77, 2479 (1955).Google Scholar
  101. 87.
    D.H. Powers and D.S. Tarbell, J. Amer. Chem. Soc., 78, 70 (1956).Google Scholar
  102. 88.
    See also, H. Kwart and E.R. Evans, J. Org. Chem., 31, 410 (1966).Google Scholar
  103. 89.
    Y. Araki, Bull. Chem. Soc. Jap., 43, 252 (1970).Google Scholar
  104. 90.
    Y. Araki and A. Kaji, Bull. Chem. Soc. Jap., 43, 3214 (1970).Google Scholar
  105. 91.
    D.L.J. Clive, Chem. Commun., 1014 (1970).Google Scholar
  106. 92.
    J.B. Thomson, P. Brown, and C. Djerassi, J. Amer. Chem. Soc., 88, 4049 (1966).Google Scholar
  107. 93.
    For a review, see G. Opitz, Angew. Chem., 79, 161 (1967).Google Scholar
  108. 94.
    W.A. Sheppard and J. Diekmann, J. Amer. Chem. Soc., 86, 1891 (1964).Google Scholar
  109. 95.
    J. Strating, L. Thijs, and B. Zwanenberg, Rec. trav. chim. Pays-Bas, 83, 631 (1964).Google Scholar
  110. 96.
    J. Strating, L. Thijs, and B. Zwanenberg, Tetrahedron Lett., 65 (1966).Google Scholar
  111. 97.
    B. Zwanenberg, L. Thijs, and J. Strating, Rec. trav. chim. Pays-Bas, 86, 577 (1967).Google Scholar
  112. 98.
    B. Zwanenberg, L. Thijs, and J. Strating, Tetrahedron Lett., 3453 (1967).Google Scholar
  113. 99.
    J.F. King, R.A. Marty, P. de Mayo, and D.L. Verdun, J. Amer. Chem. Soc., 93, 6304 (1971).Google Scholar
  114. 100.
    R.N. Hurd, Mech. React. Sulfur Compds., 3, 79 (1968).Google Scholar
  115. 101.
    H. Alper and A.S.K. Chan, Chem. Commun., 1203 (1971).Google Scholar
  116. 102.
    F. Arndt and P. Nachtwey, Chem. Ber., 56, 2406 (1923).Google Scholar
  117. 103.
    C.G. Krespan, B.C. McKusick, and T.L. Cairns, J. Amer. Chem. Soc., 82, 1515 (1960).Google Scholar
  118. 104.
    H.E. Simmons, D.C. Bolmstrom, and R.D. Vest, J. Amer. Chem. Soc., 84, 4782 (1962).Google Scholar
  119. 105.
    G. Tsuchihashi, M. Yamauchi, and A. Ohno, Bull. Chem. Soc. Jap., 43, 996 (1970).Google Scholar
  120. 106.
    The cage effect of AIBN is known to be about 35%: S.F. Nelsen and P.D. Bartlett, J. Amer. Chem. Soc., 88, 137 (1966).Google Scholar
  121. 107.
    G. Tsuchihashi, M. Yamauchi, and A. Ohno, Abstracts, 4th Symposium on Organic Sulfur Chemistry, Gifu City, Japan, Feb. 1970, p.8 (in Japanese).Google Scholar
  122. 108.
    S. Weiner and G.S. Hammond,J. Amer. Chem. Soc., 90, 1659 (1968).Google Scholar
  123. 109.
    A. Schönberg, B. König, and E. Singer, Chem. Ber., 100, 767 (1967) and references cited therein.Google Scholar
  124. 110.
    A. Ohno, Y. Ohnishi, M. Fukuyama, and G. Tsuchihashi, J. Amer. Chem. Soc., 90, 7038 (1968).Google Scholar
  125. 111.
    H. Staudinger and J. Siegwart, Helv. Chim. Acta, 3, 840 (1920).Google Scholar
  126. 112.
    T. Bacchetti, A. Alemagna, and B. Danieli, Tetrahedron Lett., 3569 (1964).Google Scholar
  127. 113.
    W. Reid and B.M. Beck, Ann. Chem., 673, 124 (1964).Google Scholar
  128. 114.
    C.E. Diebert, J. Org. Chem., 35, 1501 (1970).Google Scholar
  129. 115.
    O. Korver, J.U. Veenland, and Th. J. de Boer, Rec. trav. chim. Pays-Bas, 81, 1031 (1962).Google Scholar
  130. 116.
    G.N. Lewis and M. Kasha, J. Amer. Chem. Soc., 67, 994 (1945).Google Scholar
  131. 117.
    P. de Mayo, private communication (1971).Google Scholar
  132. 118.
    (a) A. Ohno, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron Lett., 283 (1969);Google Scholar
  133. 118.
    (b) A. Ohno, Y. Ohnishi, and G. Tsuchihashi, J.Amer. Chem. Soc., 91, 5038 (1969): cf. also E.T. Kaiser and T.F. Wulfers, ibid., 86, 1897 (1964).Google Scholar
  134. 119.
    G. Tsuchihashi, M. Yamauchi, and M. Fukuyama, Tetrahedron Lett., 1971 (1967).Google Scholar
  135. 120.
    A. Ohno, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron Lett., 161 (1969).Google Scholar
  136. 121.
    (a) A. Ohno, Y. Ohnishi, and G. Tsuchihashi, ibid., 643 (1969); (b) A. Ohno, T. Saito, A. Kudo, and G. Tsuchihashi, Bull Chem. Soc. Jap., 44, 1901 (1971).Google Scholar
  137. 122.
    N.J. Turro and P.A. Wride, J. Amer. Chem. Soc., 92, 320 (1970) and references cited therein.Google Scholar
  138. 123.
    J.C. Dalton, P.A. Wriede, and N.J. Turro, J. Amer. Chem. Soc., 92, 1318 (1970).Google Scholar
  139. 124.
    J. A. Barltrop and H.A. Carless, Tetrahedron Lett., 3901 (1968).Google Scholar
  140. 125.
    H.E. Zimmerman, Advan. Photochem., 1, 183 (1963).Google Scholar
  141. 126.
    (a) A. Ohno, T. Koizumi, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron Lett., 2025 (1970); (b) A. Ohno, T. Koizumi, and Y. Ohnishi, Bull. Chem. Soc. Jap., 44, 2511 (1971).Google Scholar
  142. 127.
    A. Ohno, Y. Akasaki, and T. Koizumi, Abstracts, 26th General Meeting of Chem. Soc. Jap., Hiratsuka City, Japan, April 1972, p. 1061 (in Japanese).Google Scholar
  143. 128.
    D.R. Arnold, R.H. Hinman, and A.H. Grick, Tetrahedron Lett., 1425 (1964).Google Scholar
  144. 129.
    A. Ohno and N. Kito, Int. J. Sulfur Chem., Part A, 1, 26 (1971).Google Scholar
  145. 130.
    G. Oster, L. Citarel, and M. Goodman, J. Amer. Chem. Soc., 84, 703 (1962).Google Scholar
  146. 131.
    A. Ohno and N. Kito, Chem. Commun., 1338 (1971).Google Scholar
  147. 132.
    T. Yonezawa, M. Matsumoto, Y. Matsumura, and H. Kato, Bull. Chem. Soc. Japan, 42, 2323 (1969).Google Scholar
  148. 133.
    (a) U. Schmidt and K.H. Kabitzke, Angew. Chem., 76, 687 (1964);Google Scholar
  149. 133a.
    (b) U. Schmidt, K.H. Kabitzke, I. Boie, and C. Osterroht, Chem. Ber., 98, 3819 (1965).Google Scholar
  150. 134.
    N. Ishibe, M. Odani, and K. Teramura, Chem. Commun., 371 (1970).Google Scholar
  151. 135.
    A. Ohno, Y. Ohnishi, and G. Tsuchihashi, Tetrahedron, 25, 871 (1969).Google Scholar
  152. 136.
    N. Sugiyama, M. Yoshida, H. Aoyama, and T. Nishio, Chem. Commun., 1063 (1971).Google Scholar
  153. 137.
    F. Arndt, P. Nachtwey, and J. Push, Chem. Ber., 58, 1638 (1925).Google Scholar
  154. 138.
    For detailed discussions, see (a) N. Lozac’h and J. Vialle, in “The Chemistry of Organic Sulfur Compounds,” Vol. 2, N. Kharasch and C.Y. Meyers, Eds., (Pergamon Press, New York, N.Y., 1966), pp. 276–9; (b) E. Klingsberg, Quart. Rev., 23, 537 (1969).Google Scholar
  155. 139.
    (a) S. Bezzi, C. Garbuglio, M. Mammi, and G. Traverso, Gazz. Chim. Ital., 88, 1226 (1958);Google Scholar
  156. 139a.
    (b) S. Bezzi, M. Mammi, and C. Garbuglio, Nature, 182, 247 (1958).Google Scholar
  157. 140.
    (a) A.A. Bothner-By and G. Traverso, Chem. Ber., 90, 453 (1957);Google Scholar
  158. 140a.
    (b) H.G. Hertz, G. Traverso, and W. Walter, Ann. Chem., 625, 43 (1959).Google Scholar
  159. 141.
    G. Guillouzo, Bull. Soc. Chim. France, 1316 (1958).Google Scholar
  160. 142.
    D.T. Clark and D. Kilcast, Chem. Commun., 638 (1971).Google Scholar
  161. 143.
    However, cf. also R. Gleiter and D. Schmidt, ibid., 525 (1971), in which 5.63a and 5.63b are suggested to be in equilibrium.Google Scholar
  162. 144.
    E. Klingsberg,J. Amer. Chem. Soc., 85, 3244 (1963).Google Scholar
  163. 145.
    J.H. van den Hends and E. Klingsberg,J. Amer. Chem. Soc., 88, 5045 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Atsuyoshi Ohno
    • 1
  1. 1.Institute for Chemical ResearchKyoto UniversityUji, Kyoto 611Japan

Personalised recommendations