Advertisement

Abstract

Thiols, or mercaptans, are sulfur analogs of alcohols and may be characterized by their extraordinary unpleasant odor. Indeed, for trained chemists, their stink is as sensitive an analytical tool as tlc. Probably because of this reason, not much research has been done on the chemistry of thiols. Nevertheless thiols play very important roles for organisms and it is no exaggeration to say that no organism can maintain its life without thiols.

Keywords

Lipoic Acid Bond Dissociation Energy Fatty Acid Synthetase Organic Sulfur Compound Thiyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.L. Cottrell, “The Strength of Chemical Bonds”, (Academic Press Inc., New York, N.Y., 1954).Google Scholar
  2. 2.
    J.L. Franklin and H.E. Lumpkin, J.Amer. Chem. Soc., 74, 1023 (1952).Google Scholar
  3. 3. (a).
    L.E. Sutton Ed., “Interatomic Distances”, Special Publication No. 11, (The Chemical Society, London, 1958);Google Scholar
  4. 3. (b).
    S.C. Abrahams, Quart. Rev., 10, 407 (1956).Google Scholar
  5. 4.
    L. Pauling, “The Nature of the Chemical Bond”, (Cornell Univ. Press., Ithaca, N.Y., 1960), p. 110.Google Scholar
  6. 5.
    M. Kotake, Ed., “Constants of Organic Compounds”, (Asakura Pub. Co., Tokyo, Japan, 1963), p. 511.Google Scholar
  7. 6.
    M.M. Rousselot, Compt. Rend., Ser. C, 262, 26 (1966).Google Scholar
  8. 7.
    S.H. Marcus and S.I. Miller, J.Amer. Chem. Soc., 88, 3719 (1966).Google Scholar
  9. 8.
    W.H. Fletcher, ibid., 68, 2726 (1946). Google Scholar
  10. 9.
    J. Mauriu and P.A. Paris, Compt. Rend., 232, 2428 (1951).Google Scholar
  11. 10.
    H. Lumbroso, J.Chim. Phys., 49, 394 (1952).Google Scholar
  12. 11.
    L.P. Hammett, “Physical Organic Chemistry”, (McGraw-Hill Book Co., New York, N.Y., 1940), p. 50.Google Scholar
  13. 12.
    G.R. Sprengling and C.W. Lewis, J.Amer. Chem. Soc., 71, 2624 (1949).Google Scholar
  14. 13.
    H.L. Loy and D.M. Himmelblau, J.Phys. Chem., 65, 264 (1961).Google Scholar
  15. 14.
    M. M. Kreevoy, E.T. Harper, R.E. Duvall, H.S. Wilgus III, and L.T. Ditsch, J.Amer. Chem. Soc., 82, 4899 (1960).Google Scholar
  16. 15.
    C.G. Swain and C.B. Scott, ibid., 75, 141 (1953). Google Scholar
  17. 16.
    L.S. Levitt and B.W. Levitt, J.Org. Chem., 37, 332 (1972).Google Scholar
  18. 17.
    L.S. Levitt and B.W. Levitt, Chem. and Ind. (London) 990 (1970).Google Scholar
  19. 18.
    A. Schöberl and A. Wagner, in Houben-Weyl, “Methoden der Organischen Chemie”, Vol. 9, (Georg Thieme Verlag, Stuttgart, Germany, 1955), pp. 7–42.Google Scholar
  20. 19.
    R.B. Wagner and H.D. Zook, “Synthetic Organic Chemistry”, (John Wiley and Sons, Inc., New York, N.Y., 1953), pp. 778–786.Google Scholar
  21. 20.
    S.R. Sandler and W. Karo, “Organic Functional Group Preparations”, (Academic Press, New York, N.Y., 1968), pp. 480–485.Google Scholar
  22. 21.
    L.M. Ellis Jr. and E.E. Reid,J.Amer. Chem. Soc., 54, 1674 (1932).Google Scholar
  23. 22.
    J. Speziale, Org. Synth., Coll. Vol. 4, 401 (1963).Google Scholar
  24. 23.
    H. Lofod, ibid., Coll. Vol. 4, 491 (1963). Google Scholar
  25. 24.
    H.M. Foster and H.R. Snyder, ibid., Coll. Vol. 4, 638 (1963). Google Scholar
  26. 25.
    G.G. Urquhart, J.W. Gates Jr., and R. Connor, ibid., Coll. Vol. 3, 363 (1955). Google Scholar
  27. 26.
    H.F. Wilson and D.S. Tarbell, J.Amer. Chem. Soc., 72, 5203 (1950).Google Scholar
  28. 27.
    J.A. van Allan and B.D. Deacon, Org. Synth., Coll. Vol. 4, 569 (1963).Google Scholar
  29. 28.
    H. Bestian, Ann. Chem., 566, 210 (1950).Google Scholar
  30. 29.
    H. Gilman and L.A. Woods, J.Amer. Chem. Soc., 67, 1844 (1945).Google Scholar
  31. 30.
    H.R. Snyder, J.M. Stewart and J.B. Ziegler, ibid., 69, 2672 (1947). Google Scholar
  32. 31.
    V.N. Ipatieff and B.S. Friedman, ibid., 61, 71 (1939). Google Scholar
  33. 32.
    S.O. Johns and E.E. Reid., ibid., 60, 2452 (1938). Google Scholar
  34. 33.
    F.D. Bordwell and W.A. Hewett, ibid., 79, 3493 (1957). Google Scholar
  35. 34.
    R. Adams and C.S. Marvel, Org. Synth., Coll. Vol. 1, 2nd Ed., 504 (1956).Google Scholar
  36. 35.
    O. Litvay, E. Riesz, and L. Landau, Chem. Ber., 62, 1863 (1929).Google Scholar
  37. 36.
    J. Strating and H.J. Backer, Rec. trav. chim. Pays-Bas, 69, 644 (1950).Google Scholar
  38. 37.
    F. Taboury, Compt. Rend., 138, 982 (1904).Google Scholar
  39. 38.
    H. Wuyts, Bull Soc. Chim. France, [4], 5, 405 (1909).Google Scholar
  40. 39.
    A. Mailhe and M. Murat, ibid., [4], 7, 288 (1910). Google Scholar
  41. 40.
    C.F. Koelsch and G. Ullyot, J.Amer. Chem. Soc., 71, 1478 (1949).Google Scholar
  42. 41.
    M. Seyhan, Chem. Ber., 72, 594 (1949).Google Scholar
  43. 42.
    A.W. Hofmann, ibid., 1, 177 (1868). Google Scholar
  44. 43.
    J. Strating and H.J. Backer, Rec. trav. chim. Pays-Bas, 69, 638 (1950).Google Scholar
  45. 44.
    D.T. Gibson,J.Chem. Soc., 12 (1930).Google Scholar
  46. 45.
    W. Alcaley, Helv. Chim. Acta, 30, 578 (1947).Google Scholar
  47. 46.
    C. Walling, “Free Radicals in Solution”, (John Wiley and Sons, Inc., New York, N.Y. 1957), p. 323.Google Scholar
  48. 47.
    S.G. Cohen and C.H. Wang,J.Amer. Chem. Soc., 77, 4435 (1955).Google Scholar
  49. 48. (a).
    E.F.P. Harris and W.A. Waters, Nature, 170, 211 (1952);Google Scholar
  50. 48. (b).
    K.E.J. Barrett and W.A. Waters, Discussions Faraday Soc., 14, 221 (1953).Google Scholar
  51. 49.
    T. Inabe and B. Darwent,J. Phys. Chem., 64, 1431 (1960).Google Scholar
  52. 50.
    K. E. Russell, ibid., 58, 437 (1954). Google Scholar
  53. 51.
    N. Imai and O. Toyama, Bull. Chem. Soc. Jap., 33, 652 (1960).Google Scholar
  54. 52.
    J.A. Kerr and A.F. Trotman-Dickenson, J.Chem. Soc., 3322 (1957).Google Scholar
  55. 53.
    N.L. Arthur and P. Gray, Trans. Faraday Soc., 65, 434 (1969).Google Scholar
  56. 54.
    W.A. Pryor and K.G. Kneipp, J.Amer. Chem. Soc., 93, 5584 (1971).Google Scholar
  57. 55.
    E.S. Lewis and M.M. Butler, J.Org. Chem., 36, 2582 (1971).Google Scholar
  58. 56.
    C.D. Hurd and L.L. Gershheim, J.Amer. Chem. Soc., 69, 2328 (1947).Google Scholar
  59. 57. (a).
    E.A.I. Haiba, J.Org. Chem., 31, 776 (1966);Google Scholar
  60. 57. (b).
    M.S. Kharasch and C.F. Fuchs, ibid., 13, 97 (1948). Google Scholar
  61. 58.
    C.F.H. Allen and W.J. Humphlett, Can, J. Chem., 44, 2315 (1966).Google Scholar
  62. 59.
    B. Dmuchovsky, F.B. Zienty, and W.A. Vredenburgh, J.Org. Chem., 31, 865 (1966).Google Scholar
  63. 60. (a).
    E.N. Prilezhaeva, N.P. Petukhova, and M.F. Shostakovskii, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, 728 (1962);Google Scholar
  64. 60. (a)a.
    E.N. Prilezhaeva, N.P. Petukhova, and M.F. Shostakovskii, Chem. Abstr., 57, 14930h (1962);Google Scholar
  65. 60. (b).
    E.N. Prilezhaeva, N.P. Petukhova, and M.F. Shostokovskii, Doklady Acad. Nauk SSSR, 154, 160 (1964);Google Scholar
  66. 60. (ba).
    E.N. Prilezhaeva, N.P. Petukhova, and M.F. Shostokovskii, Chem. Abstr., 60, 9143g (1964).Google Scholar
  67. 61.
    B. Saville, J.Chem. Soc., 5040 (1962).Google Scholar
  68. 62.
    N. Kharasch, “Sulfenium Ions and Sulfenyl Compounds”, in “Organic Sulfur Compounds” Vol. 1, N. Kharasch, Ed., (Pergamon Press, New York, N.Y., 1961), pp. 375–396.Google Scholar
  69. 63.
    W.A. Pryor, “Mechanisms of Sulfur Reactions”, (McGraw-Hill Book Co., New York, N.Y., 1962), pp. 75–93.Google Scholar
  70. 64.
    R.M. Kellogg, “Thiyl Radicals”, in “Methods in Free Radical Chemistry”, Vol. 2, E.S. Huyser, Ed., (Dekker, Inc., New York, N.Y., 1969), pp. 1–120.Google Scholar
  71. 65.
    F.R. Mayo and C. Walling, Chem. Rev., 27, 351 (1940).Google Scholar
  72. 66.
    M.S. Kharasch, A.T. Read, and F.R. Mayo, Chem. and Ind. (London), 57, 792 (1938).Google Scholar
  73. 67.
    C. Walling and W. Helmreich,J. Amer. Chem. Soc., 81, 1144 (1965).Google Scholar
  74. 68.
    A. Ohno, T. Saito, A. Kudo, and G. Tsuchihashi, Bull. Chem. Soc Jap., 44, 1901 (1971).Google Scholar
  75. 69.
    K. Sugimoto, W. Ando, and S. Oae, ibid., 38, 224 (1965). Google Scholar
  76. 70.
    S. Sivertz, W. Andrews, W. Elsdon, and K. Graham, J.Polymer Sci., 19, 587 (1956)Google Scholar
  77. 71. (a).
    D.M. Graham, R.L. Mieville, and C. Sivertz, Can. J. Chem., 42, 2239 (1964);Google Scholar
  78. 71. (b).
    D.M. Graham, R.L. Mieville, R.H. Palleu, and C. Sivertz, ibid., 42, 2250 (1964);Google Scholar
  79. 71. (c).
    D.M. Graham and J.F. Soltys, ibid., 47, 2719 (1969). Google Scholar
  80. 72.
    A. Ohno and Y. Ohnishi, Int. J. Sulfur Chem., Part A, 1, 203 (1971).Google Scholar
  81. 73.
    A.B. Terent’ev and R.G. Petrova, Bull. Acad. Sci. USSR, Div. Chem. Soc., 1984 (1963).Google Scholar
  82. 74.
    J.A. Kampmeier, R.P. Geer, A.J. Meskin, and R.M. D’Silva, J.Amer Chem. Soc., 88, 1257 (1966).Google Scholar
  83. 75.
    E.S. Huyser and R.M. Kellogg, J.Org. Chem., 31, 3366 (1966).Google Scholar
  84. 76.
    J.I.G. Cadogan and I.H. Sadler, J.Chem. Soc., (B), 1191 (1966).Google Scholar
  85. 77.
    A.A. Oswald and M. Naegele, J.Org. Chem., 31, 830 (1966).Google Scholar
  86. 78.
    W.H. Mueller, ibid., 31, 3075 (1966). Google Scholar
  87. 79. (a).
    A. Ohno, Y. Ohnishi, and N. Kito, Int. J. Sulfur Chem., Part A, 1, 151 (1971);Google Scholar
  88. 79. (b).
    A. Ohno and Y. Ohnishi, Tetrahedron Lett., 4405 (1969);Google Scholar
  89. 79. (c).
    A. Ohno, N. Kito, and Y. Ohnishi, Bull. Chem. Soc. Jap., 44, 470 (1971).Google Scholar
  90. 80. (a).
    S.J. Cristol and J.A. Reeder, J.Org. Chem., 26, 2182 (1961);Google Scholar
  91. 80. (b).
    S.J. Cristol and C.D. Brindell, J.Amer. Chem. Soc., 76, 5699 (1954);Google Scholar
  92. 80. (c).
    G.D. Brindell and S.J. Cristol, “Additions of Thiols and Related Substances to Bridged Bicyclic Olefins”, in “Organic Sulfur Compounds”, Vol. 1. N. Kharasch, Ed., (Pergamon Press, New York, N.Y., 1961), pp. 134–145.Google Scholar
  93. 81. (a).
    H.L. Goering, P.L. Abell, and B.F. Aycock, J.Amer. Chem. Soc., 74, 3588 (1952);Google Scholar
  94. 81. (b).
    H.L. Goering, D.I. Relyea, and W. Larsen, ibid., 78, 348 (1956). Google Scholar
  95. 82.
    D.I. Davies and P.J. Rowley, J.Chem. Soc., (C), 2249 (1967).Google Scholar
  96. 83.
    N.P. Neutreiter and F.G. Bordwell, J.Amer. Chem. Soc., 82, 5354 (1960).Google Scholar
  97. 84.
    P.S. Skell and R.G. Allen, ibid., 82, 1511 (1960). Google Scholar
  98. 85.
    P.K. Freeman, M.F. Grostic, and F.A. Raymond, J.Org. Chem., 36, 905 (1971).Google Scholar
  99. 86.
    T. Kawamura, M. Ushio, T. Fugimoto, and T. Yonezawa, J.Amer. Chem. Soc., 93, 908 (1971).Google Scholar
  100. 87.
    P.D. Readio and P.S. Skell,J.Org. Chem., 31, 759 (1966).Google Scholar
  101. 88.
    E.S. Huyser and J.R. Jeffrey, Tetrahedron, 21, 3083 (1965).Google Scholar
  102. 89.
    F.G. Bordwell, P.S. Landis, and G.S. Whitney, J.Org. Chem., 30, 3764 (1965).Google Scholar
  103. 90.
    N.A. LeBel and A. DeBoer, J.Amer. Chem. Soc., 89, 2784 (1967).Google Scholar
  104. 91.
    W.A. Pryor and K. Smith, ibid., 92, 2731 (1970). Google Scholar
  105. 92.
    A. Ohno, Y. Ohnishi, M. Fukuyama, and G. Tsuchihashi, ibid., 90, 7038 (1968). Google Scholar
  106. 93.
    J.F. Ford, R.C. Pitkethly, and V.O. Young, Tetrahedron, 4, 325 (1958).Google Scholar
  107. 94.
    A. Ohno and Y. Ohnishi, Tetrahedron Lett., 339 (1972).Google Scholar
  108. 95.
    E.S. Huyser, H. Berson, and H.J. Sinnige, J.Org. Chem., 32, 622 (1967).Google Scholar
  109. 96.
    A.A. Oswald and K. Griesbaum, “Radical Additions of Thiols to Diolefins and Acetylenes”, in “Organic Sulfur Compounds”, Vol. 2, N. Kharasch and C.Y. Meyers Eds., (Pergamon Press, New York, N.Y., 1966), pp. 233–256.Google Scholar
  110. 97.
    S.J. Cristol, T.W. Russell and D.I. Davies, J.Org. Chem., 30, 207 (1965).Google Scholar
  111. 98.
    E.S. Huyser and R.M. Kellogg, ibid., 30, 3003 (1965). Google Scholar
  112. 99.
    R.E. Benson and R.V. Linsey Jr., J.Amer. Chem. Soc., 81, 4253 (1959).Google Scholar
  113. 100. (a).
    W. A. Thaler, A.A. Oswald and B.E. Hudson Jr., ibid., 87, 311 (1965); Google Scholar
  114. 100. (b).
    A.A. Oswald, K. Griesbaum, W.A. Thaler, and B.E. Hudson Jr., ibid., 84, 3897 (1962). Google Scholar
  115. 101.
    p. 314 of Ref. 36.Google Scholar
  116. 102.
    J.A. Claisse and D.I. Davies, J.Chem. Soc., 1045 (1966).Google Scholar
  117. 103.
    M.S. Kharasch, W. Nudenberg, and G.J. Mantell, J.Org. Chem., 16, 524 (1951).Google Scholar
  118. 104.
    H. Bredereck, A. Wagner, and A. Kottenhahn, Chem. Ber., 93, 2415 (1960).Google Scholar
  119. 105.
    A.A. Oswald, J.Org. Chem., 24, 443 (1959).Google Scholar
  120. 106.
    A.A. Oswald, ibid., 25, 467 (1960). Google Scholar
  121. 107.
    A.A. Oswald, ibid., 26, 842 (1961). Google Scholar
  122. 108.
    A.A. Oswald and F. Noel, ibid., 26, 3948 (1961). Google Scholar
  123. 109.
    A.A. Oswald, F. Noel, and A.J. Stephenson, ibid., 26, 3969 (1961). Google Scholar
  124. 110.
    A.A. Oswald, F. Noel, and G. Fisk, ibid., 26, 3974 (1961). Google Scholar
  125. 111.
    A.A. Oswald, B.E. Hudson Jr., G. Rogers, and F. Noel, ibid., 27, 2439 (1962). Google Scholar
  126. 112.
    A.A. Oswald, K. Griesbaum, W.A. Thaler, and B.E. Hudson Jr., J.Amer. Chem. Soc., 84, 3897 (1962).Google Scholar
  127. 113.
    A.A. Oswald, K. Griesbaum, and B.E. Hudson Jr., J.Org. Chem., 28, 1262 (1963).Google Scholar
  128. 114.
    K. Griesbaum, A.A. Oswald, and B.E. Hudson Jr.,J. Amer. Chem. Soc., 85, 1969 (1963).Google Scholar
  129. 115.
    A.A. Oswald, K. Griesbaum, and B.E. Hudson Jr., J.Org. Chem., 28, 2361 (1963).Google Scholar
  130. 116.
    A.A. Oswald, K. Griesbaum, and B.E. Hudson Jr.,J. Org. Chem., 28, 2355 (1963).Google Scholar
  131. 117.
    A.A. Oswald and T.J. Wallace, “Anionic Oxidation of Thiols and Co-oxidation of Thiols with Olefins”, in “Organic Sulfur Compounds”, Vol. 2, N. Kharasch and C.Y. Meyers, Eds., (Pergamon Press, New York, N.Y., 1966), pp. 205–232.Google Scholar
  132. 118.
    R.E. Foster, A.W. Larchar, R.D. Lipscomb, and B.C. McKusick, J.Amer. Chem. Soc., 78, 5606 (1956).Google Scholar
  133. 119.
    W.E. Truce and J.A. Simms, ibid., 78, 2756 (1956). Google Scholar
  134. 120.
    W.E. Truce and D.L. Goldhamer, ibid., 82, 5798 (1960). Google Scholar
  135. 121.
    M.F. Shostakovskii, E.N. Prilezhaeva, L.V. Tsymbal, and L.G. Stolyarova, Zhur. Obschei Khim., 30, 3143 (1960);Google Scholar
  136. 121a.
    M.F. Shostakovskii, E.N. Prilezhaeva, L.V. Tsymbal, and L.G. Stolyarova, Chem Abstr., 55, 17474f (1961).Google Scholar
  137. 122.
    W.E. Truce, M.M. Boudakian, R.F. Heine, and R.J. MacManimie, J.Amer. Chem. Soc., 78, 2743 (1956).Google Scholar
  138. 123.
    W.E. Truce and R. Kassinger, ibid., 80, 1916, 6450 (1958). Google Scholar
  139. 124.
    W.E. Truce and M.M. Boudakian, ibid., 78, 2748 (1956). Google Scholar
  140. 125.
    H.C. Volger and J.F. Arens, Rec. trav. chim. Pays-Bas, 71, 1170 (1958).Google Scholar
  141. 126.
    C.C. Price and S. Oae, “Sulfur Bonding”, (Ronald Press, New York, N.Y., 1962).Google Scholar
  142. 127.
    H.J. Boonstra and J.F. Arens, Rec. trav. chim. Pays-Bas, 79, 867 (1960).Google Scholar
  143. 128.
    W.H. Mueller and K. Griesbaum, J.Org. Chem., 32, 856 (1967).Google Scholar
  144. 129.
    A. Dondoni, G. Modena, and G. Scorrano, Ric. Sci. Rend. Sez., A6 665 (1964);Google Scholar
  145. 129a.
    A. Dondoni, G. Modena, and G. Scorrano, Chem. Abstr., 65, 18447e (1966).Google Scholar
  146. 130.
    F.W. Stacey and J.F. Harris Jr., Organic Reactions, 13, 150 (1963).Google Scholar
  147. 131.
    J. Bonnema and J.F. Arens, Rec. trav. chim. Pays-Bas, 79, 1137 (1960).Google Scholar
  148. 132.
    H.J. Alkema and J.F. Arens, ibid., 79, 1257 (1960). Google Scholar
  149. 133.
    Y.-C. Liu, H.-K. Wang, and S.-C. Chu, Hua Hseuh. Pao, 30, 283 (1964);Google Scholar
  150. 133a.
    Y.-C. Liu, H.-K. Wang, and S.-C. Chu, Chem. Abstr., 61, 11865g (1964).Google Scholar
  151. 134.
    I.G. Sulimov and A.A. Petrov, Zhur. Organ. Khim., 2, 767 (1966);Google Scholar
  152. 134a.
    I.G. Sulimov and A.A. Petrov, Chem. Abstr., 65, 12099b (1966).Google Scholar
  153. 135.
    J.A. Kampmeier, J.Amer. Chem. Soc., 88, 1959 (1966).Google Scholar
  154. 136.
    R.M. Fantazier and J.A. Kampmeier, ibid., 88, 5219 (1966). Google Scholar
  155. 137.
    L.A. Singer and N.P. Kong, Tetrahedron Lett., 2089 (1966).Google Scholar
  156. 138.
    L.A. Singer and N.P. Kong, J.Amer. Chem. Soc., 88, 5213 (1966).Google Scholar
  157. 139.
    J.F. Arens, A.C. Hermans, and J.H.S. Weiland, Proc. Kon. Acad. Wetenschap, B58, 78 (1955).Google Scholar
  158. 140.
    M.F. Shostakovskii, E.N. Prilizhaeva, and L.V. Tsymbal, Trudy po Khim. i Him. Teknol., 4, 198 (1961);Google Scholar
  159. 140a.
    M.F. Shostakovskii, E.N. Prilizhaeva, and L.V. Tsymbal, Chem. Abstr., 56, 1331b (1962).Google Scholar
  160. 141.
    A.A. Oswald, K. Griesbaum, B.E. Hudson Jr., and J.M. Bregmann, J.Amer. Chem. Soc., 86, 2877 (1964).Google Scholar
  161. 142.
    J.A. Kampmeier and G.G. Cheu, ibid., 87, 2608 (1965). Google Scholar
  162. 143.
    O. Simamura, K. Tokumaru, and H. Yui, Tetrahedron Lett., 5141 (1966).Google Scholar
  163. 144.
    D.M. Graham and J.F. Soltys, Can.J.Chem., 47, 2529 (1969).Google Scholar
  164. 145.
    K. Griesbaum, A.A. Oswald, E.R. Quiram, and P.E. Butler, J.Org. Chem., 30, 261 (1965).Google Scholar
  165. 146.
    K. Griesbaum, A.A. Oswald, E.R. Quiram, and W. Naegele, ibid., 28, 1952 (1963). Google Scholar
  166. 147.
    T.L. Jacobs and G.-E. Illingworth Jr., ibid., 28, 2692 (1963). Google Scholar
  167. 148.
    H.J. van der Pleog, J. Krotnerus, and A.F. Bickel, Rec. trav. chim, Pays-Bas, 81, 775 (1962).Google Scholar
  168. 149.
    A. Rajbenbach and M. Szwarc, Proc Roy. Soc. (London), 251A, 394 (1959).Google Scholar
  169. 150.
    A.P. Stefani, L. Herk, and M. Szwarc,J.Amer. Chem. Soc., 83, 4732 (1961).Google Scholar
  170. 151.
    K. Griesbaum, A.A. Oswald, and E.R. Quiram, J.Org. Chem., 28, 1952 (1963).Google Scholar
  171. 152.
    R.N. Haszeldine, K. Leedham, and B.R. Steele, J.Chem. Soc., 2040 (1954).Google Scholar
  172. 153.
    R.S. Neale, J.Amer. Chem. Soc., 86, 5340 (1964).Google Scholar
  173. 154.
    B. Pullmann, J.Chim. Phys., 55, 790 (1958).Google Scholar
  174. 155.
    H. Goldwhite, J.Chem. Soc., 3901 (1965).Google Scholar
  175. 156.
    H.G. Kuivila, W. Rahman, and R.H. Fish,J. Amer. Chem. Soc., 87, 2835 (1965).Google Scholar
  176. 157.
    K. Griesbaum, A.A. Oswald, and D.N. Hall,J.Org. Chem., 29, 2404 (1964).Google Scholar
  177. 158.
    A.A. Oswald, K. Griesbaum, B.E. Hudson Jr., and J.M. Bregman, Chem. and Eng. News, Oct., 28, 42 (1963).Google Scholar
  178. 159.
    J.C. Sauer, J.Amer. Chem. Soc., 79, 5314 (1957).Google Scholar
  179. 160.
    T. Fujisawa, T. Kobori, N. Ohtsuka, and G. Tsuchihashi, Tetrahedron Lett., 5071 (1968).Google Scholar
  180. 161.
    H. Brintzinger and M. Langheck, Chem. Ber., 86, 557 (1953).Google Scholar
  181. 162.
    B.S. Farah and E.E. Gilbert, J.Org. Chem., 28, 2807 (1963).Google Scholar
  182. 163.
    R.T. Wragg, J. Chem. Soc., 5482 (1964).Google Scholar
  183. 164.
    W. Wolf and N. Kharasch, J.Org. Chem., 30, 2493 (1965).Google Scholar
  184. 165.
    R.M. Kellogg and H. Wynberg,J. Amer. Chem. Soc., 89, 3495 (1967).Google Scholar
  185. 166.
    Y.A. Gol’dfarb, G.P. Pokhil, and L.I. Belen’kii, Doklady Akad. Nauk SSSR, 167, 822 (1966);Google Scholar
  186. 166a.
    Y.A. Gol’dfarb, G.P. Pokhil, and L.I. Belen’kii, Chem. Abstr., 65, 2196e (1966).Google Scholar
  187. 167.
    A.L.J. Beckwith and B.S. Low, J.Chem. Soc., 2571 (1964).Google Scholar
  188. 168.
    A.L.J. Beckwith and B.S. Low, ibid., 1304 (1961).Google Scholar
  189. 169.
    B.M. Mikailov and A.N. Blokhima, Dokl. Akad. Nauk SSSR, 80, 373 (1951);Google Scholar
  190. 169a.
    B.M. Mikailov and A.N. Blokhima, Chem. Abstr., 46, 5025b (1952).Google Scholar
  191. 170.
    F. Frerichs and E. Wildt, Ann. Chem., 366, 105 (1908).Google Scholar
  192. 171.
    T. McAllan, T.W. Cullum, R.A. Dean and F.A. Fidler, J.Amer. Chem. Soc., 73, 3627 (1951).Google Scholar
  193. 172.
    J. Xan, E.A. Wilson, L.P. Roberts, and N.H. Horton, ibid., 63, 1139 (1941). Google Scholar
  194. 173.
    T.J. Wallace and A. Schiesheim, J.Org. Chem., 27, 1514 (1962).Google Scholar
  195. 174.
    S. Gabriel and J. Colman, Chem. Ber., 45, 1643 (1912).Google Scholar
  196. 175.
    J. Barnett, J.Chem. Soc., 5 (1944).Google Scholar
  197. 176.
    H. Gilman, M.A. Plunkett, L. Tolman, L. Fullhart, and H.S. Broadbent, J.Amer. Chem. Soc., 67, 1845 (1945).Google Scholar
  198. 177.
    T.J. Wallace, A. Schreisheim, and H.B. Jonassen, Chem. and Ind. (London), 743 (1963).Google Scholar
  199. 178.
    S.G. Cohen and S. Aktipis, J.Amer. Chem. Soc., 88, 3587 (1966).Google Scholar
  200. 179.
    P.J. Wagner and R.C. Zepp, ibid., 94, 285 (1972). Google Scholar
  201. 180.
    T.J. Wallace, J.Org. Chem., 31, 1217 (1966): cf. alsoGoogle Scholar
  202. 180a.
    G.N. Schrauzer and J.W. Sibert, J.Amer. Chem. Soc., 92, 3509 (1970).Google Scholar
  203. 181.
    T.J. Wallace,J. Org. Chem., 31, 3071 (1966).Google Scholar
  204. 182.
    L. Suchomelova and J. Zyka, J.Electroanal. Chem., 5, 57 (1963);Google Scholar
  205. 182.
    L. Suchomelova and J. Zyka, Chem. Abstr., 59, 1482a (1963).Google Scholar
  206. 183.
    C.N. Yiannios and J.Y. Karabinos, J.Org. Chem., 28, 3246 (1963).Google Scholar
  207. 184.
    T.J. Wallace and H.A. Weiss, Chem and Ind. (London), 1558 (1966).Google Scholar
  208. 185 (a).
    T.J. Wallace,J.Amer. Chem. Soc., 86, 2018 (1964);Google Scholar
  209. 185 (b).
    T.J. Wallace and J.J. Mahon, ibid., 86, 4099 (1964). Google Scholar
  210. 186.
    T.J. Wallace and J.J. Mahon, J.Org. Chem., 30, 1502 (1965).Google Scholar
  211. 187.
    K. Balenovic and N. Bregant, Chem. and Ind. (London), 37 (1964).Google Scholar
  212. 188.
    T.J. Wallace and J.J. Mahon, ibid., 37 (1964).Google Scholar
  213. 189.
    S.D. Sokolov and N.M. Naideneva, Zhur. Organ. Khim., 2, 1123 (1966);Google Scholar
  214. 189a.
    S.D. Sokolov and N.M. Naideneva, Chem. Abstr., 65, 16849d (1966).Google Scholar
  215. 190.
    D.I. Relyea, P.O. Tawney, and A.R. Williams, J.Org. Chem., 27, 477 (1962).Google Scholar
  216. 191. (a).
    E.E. Reid, “Organic Chemistry of Bivalent Sulfur”, (Chemical Publishing Co., N.Y., 1942) Vol. 4, Chapter 1;Google Scholar
  217. 191. (b).
    M.J. Jansen, “The Chemistry of Carboxylic Acid and Esters”, (Interscience-Publisher, 1969), Chapter 5.Google Scholar
  218. 192.
    H. Jouben and H. Pohl, Ber., 39, 3219 (1906),Google Scholar
  219. 192a.
    H. Jouben and H. Pohl, Ber., 40, 1303 (1907).Google Scholar
  220. 193.
    R.W. Bost and O.L. Shealy, J.Amer. Chem. Soc., 73, 24 (1951).Google Scholar
  221. 194.
    F. Becke and H. Hagen, Chem. Ztg. Chem. Appl., 93, 474 (1969).Google Scholar
  222. 195.
    F. Kurzer and A. Lawson, Org. Synth., 42, 100 (1962).Google Scholar
  223. 196.
    M.I. Kabachnik and T.A. Kastryukova, Izvest Akad. Nauk SSSR, Otdel. Khim. Nauk, 121 (1953).Google Scholar
  224. 197.
    P. Hu and W. Chen, Hua Hsueh Pao, 24, 112 (1958).Google Scholar
  225. 198.
    M.I. Kabachnik, S.T. Ioffe, and T.A. Mastryukova, Zhur. Obshch. Khim., 25, 684 (1955).Google Scholar
  226. 199.
    R. Mecke and H. Spiesecke, Ber., 89, 1110 (1956).Google Scholar
  227. 200.
    E. Lindener and H.G. Karmana, Angew. Chem., 80, 319 (1968).Google Scholar
  228. 201.
    L.J. Bellamy, “The Infra-red Spectra of Complex Molecules”, (John Wiley & Sons, Inc., New York, N.Y., 1958), 2nd Ed., p. 351.Google Scholar
  229. 202. (a).
    G. Allen and R.O. Colalough, J.Chem. Phys., 25, 370 (1956);Google Scholar
  230. 202. (b).
    G. Allen and R.O. Colalough, J.Chem. Soc., 3912 (1957).Google Scholar
  231. 203.
    A. Hantzch and N. Bucerius, Ber., 59, 793 (1926).Google Scholar
  232. 204.
    E.A. Shuzam and V.M. Leviue, Kristallografia, 5, 257 (1960).Google Scholar
  233. 205.
    K. Issleib and W. Grunder, Z. Chem., 6, 318 (1966).Google Scholar
  234. 206.
    See for example, A. Ohno, Y. Ohnishi, M. Fukuyama, and G. Tsuchihashi, J.Amer. Chem. Soc., 90, 7038 (1968).Google Scholar
  235. 207.
    A. Kaiser, Acta. Chem. Scand., 4, 1347 (1950),Google Scholar
  236. 207.
    ibid., 6, 327 (1952).Google Scholar
  237. 208.
    K.A. Jensen and C.L. Jensen, ibid., 6, 957 (1962).Google Scholar
  238. 209.
    H. Wuyts, Bull. Soc. Chim. Berg., 38, 195 (1929).Google Scholar
  239. 210.
    L.A. Smith and J. Nichols, J.Org. Chem., 6, 489 (1941).Google Scholar
  240. 211.
    H. Wuyts, Bull Soc. Chim. Berg., 39, 58 (1930).Google Scholar
  241. 212.
    H. Wuyts and M. Goldstein, Bull. Soc. Chim. Berg., 40, 497 (1931).Google Scholar
  242. 213.
    H. Wuyts and H. Koek, ibid., 41, 196 (1932).Google Scholar
  243. 214.
    G.E.P. Smith, Jr. U.S. 2647144; Chem. Abstr., 48, 7637 (1954).Google Scholar
  244. 215.
    G. Alliger and G.E.P. Smith Jr., J.Org. Chem., 14, 962 (1949).Google Scholar
  245. 216.
    H. Wuyts and J. Van Vacrenlergh, Bull. Soc. Chim. Berg., 48, 329 (1939).Google Scholar
  246. 217.
    Y. Hirabayashi, M. Mizuta, M. Kojima, Y. Hirano and H. Ichihara, Bull. Chem. Soc. Jap., 44, 791 (1971).Google Scholar
  247. 218.
    S. Oae, N. Tsujimoto, and A. Nakanishi, Bull. Chem. Soc. Jap., 46, 535 (1973).Google Scholar
  248. 219.
    M. Mickolajczyk and M. Pare, Angew. Chem. Int. Ed., 5, 419 (1966).Google Scholar
  249. 220.
    S. Oae, T. Yagihara and T. Okabe, Tetrahedron, 28, 32031 (1972).Google Scholar
  250. 221.
    A. Nakanishi and S. Oae, Chem. and Ind. London, 960 (1971).Google Scholar
  251. 222.
    E.I. Hoegberg, U.S. 2632020; Chem. Abstr., 48, 2759h (1954).Google Scholar
  252. 223.
    A.D. Petrov, V.F. Mironov, and V.G. Glukhoutsev, Doklady Akad. Nauk SSSR, 93, 499 (1953).Google Scholar
  253. 224.
    T.A. Mastryukova, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, 443 (1956).Google Scholar
  254. 225.
    N.N. Mel’nikov, Khim. i Primenenie Fosforogan soedinenii Akad. Nauk SSSR, Trudy 1-oi Konferents, 1955, 50;Google Scholar
  255. 225a.
    N.N. Mel’nikov, Chem. Abstr., 52, 393g (1958).Google Scholar
  256. 226.
    A.N. Pudovik and R.A. Cherkasov, Zh. Obshch. Khim., 38, 2532 (1968).Google Scholar
  257. 227.
    A.A. Oswald, K. Griesbaum, D.N. Hall, and W. Naegele, Can. J. Chem., 45, 1173 (1967).Google Scholar
  258. 228.
    A.A. Oswald, K. Griesbaum, B.B. Hudson Jr., J.Org. Chem., 28, 1262 (1963).Google Scholar
  259. 229.
    S. Oae, A. Nakanishi, and N. Tsujimoto, Chem & Ind. London, 575 (1972).Google Scholar
  260. 230.
    G.F. Ottman and W. Hecht, Z. Electrochem., 24, 65 (1918).Google Scholar
  261. 231.
    A.N. Pudovik, B.M. Faizulsin, and G.I. Zhuravlev, Zh. Obshch. Khim., 36, 718 (1966).Google Scholar
  262. 232.
    K. Morita and S. Kobayashi, Tetrahedron Letters, 573 (1966).Google Scholar
  263. 233.
    T. Okabe, T. Yagihara, and S. Oae, unpublished results.Google Scholar
  264. 234. (a).
    J. Bongartz, Ber., 19, 2182 (1886);Google Scholar
  265. 234. (b).
    A. Fredga, Arkiv. Kemi. Mineral. Geol., 25B, 599 (1947).Google Scholar
  266. 235.
    T.C. Bruice, “The Chemistry and Biochemistry of the Acyl Thiols”, in “Organic Sulfur Compounds”, Vol. 1, Ed. N. Kharasch, (Pergamon Press, New York, N.Y., 1961), pp. 421–442.Google Scholar
  267. 236.
    T.C. Bruice and S. Benkovic, “Bioorganic Mechanisms”, Vol. 1, (W.A. Benjamin, Inc., New York, N.Y., 1966), pp. 259–297.Google Scholar
  268. 237.
    S.J. Walkel, “Lipid Metabolism”, (Academic Press, New York, N.Y., 1970), pp. 1–48.Google Scholar
  269. 238.
    E.L. Pugh and S.J. Wakil, J.Biol. Chem., 240, 4727 (1965).Google Scholar
  270. 239.
    P.W. Majerus, A.W. Alberts, and P.R. Vagelos, ibid., 240, 4723 (1965). Google Scholar
  271. 240.
    F. Lynen, Biochem.J., 102, 381 (1967).Google Scholar
  272. 241.
    F. Lynen, Federation Proc., 20, 941 (1961).Google Scholar
  273. 242.
    L.J. Reed, “Lipoic Acid”, in “Organic Sulfur Compounds”, Vol. 1, N. Kharasch, Ed., (Pergamon Press, New York, N.Y., 1961), pp. 443–452.Google Scholar
  274. 243.
    M. Koike and L.J. Reed, J.Amer. Chem. Soc., 81, 505 (1959).Google Scholar
  275. 244.
    J.A. Barltrop, P.M. Hayes and M. Clavin, ibid., 76, 4348 (1954). Google Scholar
  276. 245.
    A. Fava, A. Iliceto, and E. Camera, ibid., 79, 833 (1957). Google Scholar
  277. 246.
    E. Baker, J.Biol. Chem. 190, 685 (1951).Google Scholar
  278. 247.
    K. Lohmann, Biochem. Z., 254, 332 (1932).Google Scholar
  279. 248.
    I.A. Rose, Biochem, Biophys. Acta., 25, 214 (1957).Google Scholar
  280. 249.
    E.E. Cliffe and S.G. Waley, Biochem. J., 73, 25 (1959).Google Scholar
  281. 250.
    V. Franzen, Chem. Ber., 90, 623 (1957).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Atsuyoshi Ohno
    • 1
  • Shigeru Oae
    • 2
  1. 1.Institute for Chemical ResearchKyoto UniversityUji, Kyoto 611Japan
  2. 2.Department of ChemistryUniversity of TsukubaNiihari-gun, Ibaraki-kenJapan

Personalised recommendations