Advertisement

Reactions of Sulfonate and Sulfate Esters

  • Emil Thomas Kaiser

Abstract

This chapter is organized on the basis of a classification of sulfonate and sulfate esters according to the nature and number of the alcohols from which they are derived. In the case of the sulfate esters, the reason for this mode of organization is obvious. However, in treating the chemistry of the sulfonate esters, we could have used the nature of the parent sulfonic acids as the basis for the organization of our discussion. We did not do this for two reasons. One is that we wished to present a reasonably parallel treatment of the chemistry of sulfonate and sulfate esters. The other is that we felt that, from a mechanistic standpoint, reactivity patterns emerge most clearly when the reactions of sulfonate esters are examined in terms of the kinds of alcohol groups which can be displaced.

Keywords

Alkaline Hydrolysis Aliphatic Alcohol Cyclic Sulfate Sulfate Ester Dimethyl Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T. Roos, H. Gilman and N.J. Beaber, Org. Syn., Coll. Vol. 1, 145 (1941).Google Scholar
  2. 2.
    S. Marvel and V.C. Sekera, Org. Syn., Coll. Vol. 3, 366 (1955).Google Scholar
  3. 3.
    See, for example, the discussion of displacement reactions in “Physical Organic Chemistry” by L.P. Hammett, 2nd Edition, McGraw-Hill Book Co., New York (1970), pp. 147–185.Google Scholar
  4. 4.
    S. Winstein and D. Trifan, J. Amer. Chem. Soc., 74, 1154 (1952).CrossRefGoogle Scholar
  5. 5.
    S. Winstein and D. Trifan, J. Amer. Chem. Soc., 74, 1147 (1952).CrossRefGoogle Scholar
  6. 6.
    S. Winstein and R. Adams, J. Amer. Chem. Soc., 838 (1948).Google Scholar
  7. 7.
    S. Winstein and N.J. Holness, J. Amer. Chem. Soc., 11 5562 (1955).CrossRefGoogle Scholar
  8. 8.
    F.C. Chang, Tetrahedron Lett, 305 (1964).Google Scholar
  9. 9.
    F.G. Bordwell, B.M. Pitt and M. Knell, J. Amer. Chem. Soc., 73, 5004 (1951).CrossRefGoogle Scholar
  10. 10.
    J.F. Bunnett and J.Y. Basse Jr., J. Amer. Chem. Soc., 81, 2104 (1959).CrossRefGoogle Scholar
  11. 11.
    C.A. Bunton and Y. Frei, J. Chem. Soc., 1872 (1951).Google Scholar
  12. 12.
    CA. Bunton and V.A. Welch, ibid., 3240 (1956).Google Scholar
  13. 13.
    H. Schmid and P. Karrer, Helv. Chim. Acta, 32, 1371 (1949).CrossRefGoogle Scholar
  14. 14.
    D.R. Christman and S. Oae, Chem. Ind., 125 (1959).Google Scholar
  15. 15.
    J.F. Bunnett and J.Y. Bassett Jr., J. Org. Chem., 27, 2345 (1962).CrossRefGoogle Scholar
  16. 16.
    J.F. Bunnett and J.Y. Bassett Jr., J. Amer. Chem. Soc., 81, 2104 (1959).CrossRefGoogle Scholar
  17. 17.
    J.F. Bunnett and J.Y. Bassett Jr., J. Org. Chem., 27, 1887 (1962).CrossRefGoogle Scholar
  18. 18.
    A. Kirkien-Konasiewicz, G.M. Sammy and A. Maccoll, J. Chem. Soc. (B), 1364 (1968).Google Scholar
  19. 19.
    C. M. Suter, “The Organic Chemistry of Sulfur,” John Wiley and Sons, Inc., New York (1944), pp. 48–74.Google Scholar
  20. 20.
    C.M. Suter and H.L. Gerhart, Org. Syn., Coll. Vol. 2, 111–113 (1943).Google Scholar
  21. 21.
    R. Levaillant, Compt. Rend., 197, 648 (1933).Google Scholar
  22. 22.
    C Barkenbus and J.J. Owen, J. Amer. Chem. Soc., 56, 1204 (1934).CrossRefGoogle Scholar
  23. 23.
    G.N. Vyas and N.M. Shah, Org. Syn., Coll. Vol. 4, 837 (1963).Google Scholar
  24. 24.
    R.E. Benson and T.L. Cairns, Org. Syn., Vol. 4, 588 (1963).Google Scholar
  25. 25.
    L. Field and R.D. Clark, Org. Syn., Vol. 4, 674 (1963).Google Scholar
  26. 26.
    H. Gilman and W.E. Catlin, Org. Syn., Vol. 1, 471 (1941).Google Scholar
  27. 27.
    E.T. Kaiser, M. Panar and F.H. Westheimer, J. Amer. Chem. Soc., 85, 602 (1963).CrossRefGoogle Scholar
  28. 28.
    D.N. Kursanov and R.V. Kudryavtsev., J. Gen. Chem. U.S.S.R., 26, 3323 (1956), English translation, Consultants Bureau, Inc., N.Y.Google Scholar
  29. 29.
    I. Lauder, L.R. Wilson and B. Zerner, Australian J. Chem., 14, 41 (1961).CrossRefGoogle Scholar
  30. 30.
    R.E. Robertson and S.E. Sugamori, Can. J. Chem., 44, 1728 (1966).CrossRefGoogle Scholar
  31. 31.
    E.T. Kaiser, LR. Katz and T.F. Wulfers, J. Amer. Chem. Soc., 87, 3781 (1965).CrossRefGoogle Scholar
  32. 32.
    L. Denivelle, Compt. Rend, 199, 211 (1934).Google Scholar
  33. 33.
    L.J. Bollinger, Bull. Soc. Chim. France, 156 (1948).Google Scholar
  34. 34.
    H. Geis and E. Pfeil, Annales, 578, 11 (1952).Google Scholar
  35. 35.
    R. Cramer and D.D. Coffman, J. Org. Chem., 26, 4164 (1961).CrossRefGoogle Scholar
  36. 36.
    D.S. Breslow, R.R. Hough and J.T. Fainlough, J. Amer. Chem. Soc., 76, 5361 (1954).CrossRefGoogle Scholar
  37. 37.
    B.D. Batts, J. Chem. Soc. (B), 551 (1966).Google Scholar
  38. 38.
    G. Williams and D.J. dark, ibid, 1304 (1956).Google Scholar
  39. 39.
    N.C Deno and M.S. Newman, J. Amer. Chem. Soc., 72, 3852 (1950);CrossRefGoogle Scholar
  40. 39.
    N.C Deno and M.S. Newman, J. Amer. Chem. Soc., 73, 1920 (1951).CrossRefGoogle Scholar
  41. 40.
    R.L. Burwell Jr., J. Amer. Chem. Soc., 74, 1462 (1952).CrossRefGoogle Scholar
  42. 41.
    V. Gold and D.P.N. Satchell, J. Chem. Soc., 1635 (1956).Google Scholar
  43. 42.
    W.A. Cowdrey and D.S. Davies, ibid., 1871 (1949).Google Scholar
  44. 43.
    B.D. Batts, ibid., (B), 547 (1966).Google Scholar
  45. 44.
    S.J. Benkovic and L.K. Dunikoski Jr., Biochemistry, 9, 1390 (1970).CrossRefGoogle Scholar
  46. 45.
    S.J. Benkovic and P.A. Benkovic, J. Amer. Chem. Soc., 88, 5504 (1966).CrossRefGoogle Scholar
  47. 46.
    B. Spencer, Biochem. J., 69, 155 (1968).Google Scholar
  48. 47.
    See W.P. Jencks, “Catalysis in Chemistry and Enzymology,” McGraw-Hill, New York, (1969), p. 81, for a treatment of β-values and other topics relevant to the present discussion.Google Scholar
  49. 48.
    W.P. Jencks and M. Gilchrist,J. Amer. Chem. Soc t 86, 1410 (1964).CrossRefGoogle Scholar
  50. 49.
    G.N. Burkhardt, W.G.K. Ford and E. Singleton, J. Chem. Soc., 17 (1936);G.N. Burkhardt, A.G. Evans and E. Warhurst, ibid., 25 (1936); G.N. Burkhardt, C Horrex and D.I. Jenkins, J. Chem. Soc., 1649, 1654 (1936).CrossRefGoogle Scholar
  51. 50.
    S.J. Benkovic, J. Amer. Chem. Soc., 88, 5511 (1966).CrossRefGoogle Scholar
  52. 51.
    J.L. Kice and J.M. Anderson, J. Amer. Chem. Soc., 88, 5242 (1966).CrossRefGoogle Scholar
  53. 52.
    See, for instance, S J. Benkovic and R.C Hevey, J. Amer. Chem. Soc., 92, 4971 (1970).CrossRefGoogle Scholar
  54. 53.
    J.D. Gregory and F. Lipmann, J. Biol. Chem., 229, 1081 (1957);Google Scholar
  55. 53a.
    P.W. Robbins and F. Lipmann, J. Amer. Chem. Soc., 78, 2652 (1956);CrossRefGoogle Scholar
  56. 53b.
    F. Lipmann, Science, 128, 575 (1958).CrossRefGoogle Scholar
  57. 54.
    E. Meezan and E.A. Davidson, J. Biol. Chem., 242 1685 (1967).Google Scholar
  58. 55.
    A.S. Balasubramanian and B.K. Backhawat, Indian J. Exp. Biol, 1, 179 (1963).Google Scholar
  59. 56.
    E.T. Kaiser, Ace. Chem. Res., 3, 45 (1970).CrossRefGoogle Scholar
  60. 57.
    F.G. Bördwell, R.D. Chapman and C.E. Osborne, J. Amer. Chem. Soc., 81, 2002 (1959).CrossRefGoogle Scholar
  61. 58.
    W.E. Truce and F.D. Hoerger, J. Amer. Chem. Soc., 76, 5357 (1954).CrossRefGoogle Scholar
  62. 59.
    J. Brunken and E.J. Poppe, Ger. P. 1,049,870 (1959); Chem. Abstr., 55, P2488c (1961).Google Scholar
  63. 60.
    F.P. Boer, J.J. Flynn, E.T. Kaiser, O.R. Zaborsky, D.A. Tomalia, A.E. Young and Y.C. Tong, J. Amer. Chem. Soc., 90, 2970 (1968).CrossRefGoogle Scholar
  64. 61.
    A. Mori, M. Nagayama and H. Mandai, Bull. Chem. Soc. Japan, 44, 1669 (1971).CrossRefGoogle Scholar
  65. 62.
    J.S. Brimacombe, A.B. Foster and M. Stacey, Chenu Ind., 262 (1959).Google Scholar
  66. 63.
    J.S. Brimacombe, A.B. Foster, E.B. Hancock, W.G. Overend and M. Stacey, J. Chem. Soc., 201 (1960).Google Scholar
  67. 64.
    H.K. Garner and H.J. Lucas, J. Amer. Chem. Soc., 72, 5497 (1950).CrossRefGoogle Scholar
  68. 65.
    J.R. Cox Jr., R.E. Wall and F.H. Westheimer, Chem. Ind., 929 (1959).Google Scholar
  69. 66.
    T.A. Steitz and W.N. Lipscomb,J. Amer. Chem. Soc., 87, 2488 (1965).CrossRefGoogle Scholar
  70. 67.
    F.H. Westheimer, Ace. Chem. Res., 1, 70 (1968).CrossRefGoogle Scholar
  71. 68.
    E.T. Kaiser, LR. Katz and T.F. Wulfers, J. A mer. Chem. Soc., 87, 3781 (1965).CrossRefGoogle Scholar
  72. 69.
    E.T. Kaiser and O.R. Zaborsky, J. A mer. Chem. Soc., 90, 4626 (1968).CrossRefGoogle Scholar
  73. 70.
    O.R. Zaborsky and E.T. Kaiser, J. A mer. Chem. Soc., 88, 3084 (1966).CrossRefGoogle Scholar
  74. 71.
    E.T. Kaiser, K. Kudo and O.R. Zaborsky, J. A mer. Chem. Soc., 89, 1393 (1967).CrossRefGoogle Scholar
  75. 72.
    P.S. Tobias and F.J. Kézdy, J. A mer. Chem. Soc., 91, 5171 (1969).CrossRefGoogle Scholar
  76. 73.
    In DMSO, a pKa of 15.6 was found for the ionization of the methylene group in the five-membered sulfone. This value is significantly lower than that measured for the corresponding ionization in phenyl Of-toluenesulfonate. D.F. Mayers, Ph.D. thesis, University of Chicago (1973).Google Scholar
  77. 74.
    P. Müller, D.F. Mayers, O.R. Zaborsky and E.T. Kaiser, J. Amer. Chem. Soc., 91, 6732(1969).CrossRefGoogle Scholar
  78. 75.
    O.R. Zaborsky and E.T. Kaiser, J. A mer. Chem. Soc., 92, 860 (1970). Chem. Commun., 197 (1967).CrossRefGoogle Scholar
  79. 77.
    F.P. Boer and J.J. Flynn, J. Amer. Chem. Soc., 91, 6604 (1969).CrossRefGoogle Scholar
  80. 78.
    E.T. Kaiser, T.W.S. Lee and F.P. Boer, J. A mer. Chem. Soc., 93, 2351 (1971).CrossRefGoogle Scholar
  81. 79.
    J.H. Smith, T. Inoue and E.T. Kaiser, J. Amer. Chem. Soc., 94, 3098 (1972).CrossRefGoogle Scholar
  82. 80.
    C.H. Rochester, “Acidity Functions,” Academic Press, New York (1970).Google Scholar
  83. 81.
    C.H. Rochester, Trans. Faraday Soc., 59, 2826 (1963).CrossRefGoogle Scholar
  84. 82.
    G. Yagil, J. Phys. Chem., 71, 1034 (1967).CrossRefGoogle Scholar
  85. 83.
    E.T. Kaiser, K.-W. Lo, K. Kudo and W. Btig, Bioorg. Chem., 1, 32 (1971).CrossRefGoogle Scholar
  86. 84.
    T.C. Bruice and S. Benkovic, “Bioorganic Mechanisms,” Vol. 1, W.A. Benjamin, Inc., New York (1966), pp. 46–66.Google Scholar
  87. 85.
    Added in proof: Nucleophilic catalysis by imidazde has been found in the solvolysis of the six-membered cyclic sulfonate β-(2-hydroxy-3, 5-dinitrophenyl) sulfonic acid sulfone. W. Berg, P. Campbell and E.T. Kaiser, J. Amer. Chem. Soc., 94, 7933 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Emil Thomas Kaiser
    • 1
  1. 1.Department of ChemistryUniversity of ChicagoChicagoUSA

Personalised recommendations