Advertisement

Sulfinic Acids and Sulfinic Esters

  • Shigeru Oae
  • Norio Kunieda

Abstract

Sulfinic acids are formed readily either by reduction of sulfonyl chlorides with zinc and alkaline solution or by alkaline hydrolysis of thiolsulfonates. Unlike the sulfonic acid, the sulfinic acid retains a lone electron pair on the sulfur atom and hence often behaves as a nucleophile. At the same time, the sulfinic acid is a strong acid and considered to be a key intermediate in the oxidation of the mercaptan to the corresponding sulfonic acid. Although most sulfinic acids are quite reactive, the chemistry of these acids and their esters are relatively unexplored. However, it will not be long before the chemical behavior of sulfinic acid will be uncovered, like that of sulfoxides.

Keywords

Sulfonyl Chloride Sulfinic Acid Diphenyl Sulfide Solvent Isotope Effect Alkyl Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.E. Truce and A.M. Murphy, Chem. Revs., 48, 69 (1951).Google Scholar
  2. 2.
    C.J.M. Stirling, “The Chemistry of Organic Sulfur Compounds, ” Vol. 3. (1966).Google Scholar
  3. 3. a)
    F.C. Whitmore and F.H. Hamilton, Org. Syn., Coll Vol. 1, 492 (1941).Google Scholar
  4. 3. b)
    H. Gilman, E.W. Smith, and H.J. Oatfield, J. Amer. Chem. Soc., 56, 1413 (1934).Google Scholar
  5. 4.
    Ger. P. 912, 091 May. 24 (1954).Google Scholar
  6. 5.
    N. Kunieda, K. Sakai, and S. Oae, Bull. Chem. Soc. Japan, 41, 3015 (1968).Google Scholar
  7. 6. a)
    S. Smiles and C.M. Bere, Org. Syn., Coll. Vol. 1, 7 (1941).Google Scholar
  8. 6. b)
    S. Krishna and H. Singh, J. Amer. Chem. Soc., 50, 792 (1928).Google Scholar
  9. 6. c)
    M. Kulka, ibid., 72, 1216 (1950).Google Scholar
  10. 7. a)
    L. Field and F.A. Geunwald, J. Org. Chem., 16, 964 (1951).Google Scholar
  11. 7.b)
    S.G. Mairanovski and M.B. Neiman, Dokl. Akad. Nauk SSSR, 79, 85 (1951).Google Scholar
  12. 8. a)
    H.R. Todd and R.L. Shriner, J. Amer. Chem. Soc., 56, 1382 (1934).Google Scholar
  13. 8. b)
    J. Thomas, J. Chem. Soc., 95, 342 (1909).Google Scholar
  14. 8. c)
    W.A. Silvester and W.P. Wynne, ibid., 693 (1936).Google Scholar
  15. 9. a)
    C.S. Marval and R.S. Johnson, J. Org. Chem., 13, 822 (1948).Google Scholar
  16. 9. b)
    E. Rothstein, J. Chem. Soc., 309 (1937).Google Scholar
  17. 9. c)
    J.V. Braun, Chem. Ber., 63, 2839 (1930).Google Scholar
  18. 9. d)
    H.G. Haulton and H.V. Tartar, J. Amer. Chem. Soc., 60, 544 (1938).Google Scholar
  19. 10.
    W.E. Truce and J.F. Lyons, ibid., 73, 126 (1951).Google Scholar
  20. 11. a)
    R.M. Hann, ibid., 57, 2166 (1936).J. Amer. Chem. Soc. Google Scholar
  21. 11. b)
    J.R. Nooi, P.C. Van-der Hoeven and W.P. Haslinghuis, Tetrahedron Lett., 2531 (1970).Google Scholar
  22. 12.
    R.E. Dabby, J. Kenyon, and R.E. Mason, J. Chem. Soc., 4881 (1952).Google Scholar
  23. 13.
    W.M. Ziegler and R. Connor, J. Amer. Chem. Soc., 62, 2596 (1940).Google Scholar
  24. 14.
    D.B. Hope, CD. Morgan, and M. Walti, J. Chem. Soc., 270 (1970).Google Scholar
  25. 15. a)
    W.E. Truce, W.J. Ray, Jr., O.L. Norman, and D.B. Eickemeyer, J. Amer. Chem. Soc., 80, 3625 (1958).Google Scholar
  26. 15. b)
    W.E. Truce and W. Brand, ibid., 35, 1828 (1970).Google Scholar
  27. 16. a)
    R.N. Haszeldine and J.M. Kidd, J. Chem. Soc., 2091 (1955).Google Scholar
  28. 16. b)
    K.R. Brower and LB. Dauglass, J. Amer. Chem. Soc., 73, 5787 (1951).Google Scholar
  29. 17.
    For details see “Sulfur Bonding” by C.C. Price and S. Oae, Ronald Press, New York (1962).Google Scholar
  30. 18.
    I.B. Douglass and D.R. Poole, J. Org. Chem., 23, 330 (1958);Google Scholar
  31. 18a.
    S. Oae and K. Ikura, Bull. Chem. Soc Japan, 39, 1309 (1966).Google Scholar
  32. 19.
    E.N. Guryanova and Ya. K. Syrkin, Zhur. Fiz. Khim., 23, 105 (1949).Google Scholar
  33. 20.
    O. Exner, P. Dembech, and P. Vivarelli, J. Chem. Soc., (B), 278 (1970).Google Scholar
  34. 21.
    S. Detoni and D. Hodzl, J. Chem. Soc., 3163 (1955).Google Scholar
  35. 22.
    D. Barnard, J.M. Fabian and H.P. Koch, ibid., 2442 (1949).Google Scholar
  36. 22a.
    E.S. Waight, ibid, 2440(1952).Google Scholar
  37. 23.
    J.P. Weidner and S.S. Block, Appl. Spectr., 23, 337 (1969).Google Scholar
  38. 24.
    M. Kobayashi and N. Naga, Bull. Chem. Soc. Japan, 39, 1788 (1966).Google Scholar
  39. 25.
    G. Ghersetti and G. Modena, Ann. Chem. (Rome), 53, 1083 (1963);Google Scholar
  40. 25a.
    B. Bonini, S. Ghersetti, and G. Modena, Gazz. Chem. Ital, 93, 1222 (1963).Google Scholar
  41. 26.
    C.C. Price and J.J. Hydock, J. Amer. Chem. Soc., 74, 1943 (1952).Google Scholar
  42. 27. a)
    Y. Hirota, “Interpretation of UV and Visible Absorption Spectra, ” Chapter 4, Kyoritsu Shuppan (1965).Google Scholar
  43. 27. b)
    H.H. Jaffé and M. Orchin, “Theory and Applications of Ultraviolet Spectroscopy, ” p. 466, John Wiley & Sons, N.Y. (1962).Google Scholar
  44. 28.
    H. Bredereck, G. Brod, and G. Hoshele, Chem. Ber., 88, 438 (1955).Google Scholar
  45. 29.
    H. Phillips, J. Chem. Soc., 127, 2552 (1925).Google Scholar
  46. 30.
    O. Bastiasen and H. Viervoll, Acta Chem. Second., 2, 702 (1948).Google Scholar
  47. 31.
    E.B. Fleischer, M. Axelrod, M. Green and K. Mislow, J. Amer. Chem. Soc., 86, 3395 (1964).Google Scholar
  48. 32.
    D.G. Hellier, J.G. Tilett, H.F. van Woerden, and R.F.M. White, Chem. Ind., 1963, (1956).Google Scholar
  49. 33. a)
    G. Wood and M. Miskow, Tetrahedron Lett., 4433 (1966).Google Scholar
  50. 33. b)
    H.F. van Woerden and E. Havinga, Rec Trav. Chim. Pays-Bas, 86, 341, 353 (1967).Google Scholar
  51. 33. c)
    H.F. van Woerden, Chem. Revs., 63, 557 (1960).Google Scholar
  52. 34.
    P.C. Lauterbru, J.G. Pritchard, and R.L. Vollmer, J. Chem. Soc., 5307 (1963).Google Scholar
  53. 35.
    S.E. Forman, A.J. Durbetaki, M.V. Cohen, and R.A. Olofson, J. Org. Chem., 30, 169 (1954).Google Scholar
  54. 36.
    S. Sugden, J.B. Reed, and H. Wilkins, J. Chem. Soc., 1525 (1925).Google Scholar
  55. 37.
    P. Rumpf and J. Sadet, Bull Soc Chem. France, No. 4, 447 (1958); R.R. Coats and D.T. Gibson, J. Chem. Soc., 442 (1940).Google Scholar
  56. 38.
    M. Kobayashi, private communication.Google Scholar
  57. 39.
    H. Bredereck, A. Wagner, R. Blashke, G. Demetriades, and K.G. Kottenhahn, Chem. Ber., 92, 2628 (1959).Google Scholar
  58. 40.
    B.J. Lindberg, Acta Chem. Scand., 20, 1843 (1966).Google Scholar
  59. 41. a)
    C.M. Surer, “Organic Chemistry of Sulfur, ” Wiley, N.Y. (1948).Google Scholar
  60. 41.b)
    P. Allen, L.S. Karger, J.D. Haygood, and J. Strensel, J. Org. Chem., 16, 767 (1951).Google Scholar
  61. 42.
    C.S. Marvel and R.S. Johnson, ibid., 13, 822 (1948).Google Scholar
  62. 43.
    R. Otto, Annales, 145, 13, 317 (1868).Google Scholar
  63. 44. a)
    J.L. Kice and K.W. Bowers, J. Amer. Chem. Soc., 84, 605 (1962).Google Scholar
  64. 44. b)
    J.L. Kice and K.W. Bowers, J. Org. Chem., 29, 1162 (1963).Google Scholar
  65. 45.
    J.L. Kice, D.C Hampton, and A. Fitzgerald, ibid., 20, 882 (1965).Google Scholar
  66. 46.
    J.L. Kice, G. Guaraldi, and CG. Venier, ibid., 31, 3561 (1966).Google Scholar
  67. 47. a)
    J.L. Kice and G. Guaraldi, J. Amer. Chem. Soc., 88, 5236 (1966).Google Scholar
  68. 47. b)
    J.L. Kice and G. Guaraldi, ibid., 89, 4113 (1967).Google Scholar
  69. 48.
    J.L. Kice and G. Guaraldi, Tetrahedron Lett, 6135 (1966).Google Scholar
  70. 49. a)
    J.L. Kice and J.W. Bowers, J. Amer. Chem. Soc., 84 2384 (1962).Google Scholar
  71. 49. b)
    J.L. Kice and E.H. Morkved, ibid., 86, 2270 (1964).Google Scholar
  72. 50.
    J.L. Kice and K.W. Bowers, ibid., 84, 2390 (1962).Google Scholar
  73. 51.
    J.L. Kice and E.H. Morkved, J. Org. Chem., 29, 1942 (1964).Google Scholar
  74. 52.
    J.L. Kice, B.R. Toth, D.C. Hampton, and J.F. Barbow, ibid., 31, 848 (1966).Google Scholar
  75. 53. a)
    E. Vinkler and F. Klivenyi, Acta Chim. Acad, Sci. Hung., 19, 15 (1957);Google Scholar
  76. 53. aa)
    ibid., 22, 345 (1960).Google Scholar
  77. 53. b)
    D. Barnard, J. Chem. Soc., 4675 (1957).Google Scholar
  78. 54.
    J.L. Kice, C.G. Venier and L. Heasley, J. Amer. Chem. Soc., 89, 3557 (1967).Google Scholar
  79. 55.
    T.L. Moore and D.E. O’Connor, J. Org. Chem., 31, 3587 (1966).Google Scholar
  80. 56.
    H.J. Backerand H. Kloosterziel, Rec. Trav. Chim., 73, 129 (1954).Google Scholar
  81. 57.
    S. Oae and S. Kawamura, Bull. Chenu Soc. Japan, 35, 1156 (1962).Google Scholar
  82. 58. a)
    T. Zincke and S. Lenhardt, Annales, 400, 1 (1913).Google Scholar
  83. 58. b)
    T. Zincke and F. Farr, Annales, 291, 55 (1912).Google Scholar
  84. 58. c)
    N. Kharasch, S.J. Potempa, and H.L. Wehrmeister, Chem. Revs., 39, 269 (1946).Google Scholar
  85. 59.
    K. Ikura and S. Oae, Tetrahedron Lett., 3791 (1968).Google Scholar
  86. 60. a)
    S. Oae and K. Ikura, Bull. Chem. Soc. Japan, 38, 58 (1965).Google Scholar
  87. 60. b)
    S. Oae and K. Ikura, ibid., 40, 1421 (1967).Google Scholar
  88. 61.
    R.M. Topping and N. Kharasch, Chem. Ind., 178 (1961).Google Scholar
  89. 62.
    S. Oae and K. Ikura, Bull. Chem. Soc. Japan, 39, 1306 (1966).Google Scholar
  90. 63.
    S. Tamagaki, R. Ichihara and S. Oae, unpublished data.Google Scholar
  91. 64.
    R. Otto, Chem. Ber., 13, 1272 (1880).Google Scholar
  92. 65.
    H.J. Backer, J.S. Strating, and J.F.A. Fazenberg, Rec. Trav. Chim. Pays-Bas, 72, 813 (1953).Google Scholar
  93. 66. a)
    B. Lindberg, ActaChem. Scand., 17, 393 (1963).Google Scholar
  94. 66. b)
    LB. Douglass, F.J. Ward, and R.V. Norton, J. Org. Chem., 32, 324 (1967).Google Scholar
  95. 66. c)
    R.J. Mulder, A.M. von Lausen, and J. Strating, Tetrahedron Lett., 3061(1967).Google Scholar
  96. 67.
    F. Klivényi, Magyar, Kern. Falyoirot, 64, 121 (1958).Google Scholar
  97. 68.
    C.J.M. Stirling, J. Chem. Soc., 3597 (1957).Google Scholar
  98. 69.
    H. Bredereck, A. Wagner, H. Beck, and R.J. Klein, Chem. Ber., 93, 2736 (1960).Google Scholar
  99. 70.
    C.M. Suter, “Organic Chemistry of Sulfur, ” John Wiley & Sons, N.Y. (1948).Google Scholar
  100. 71.
    M. Kobayashi, Bull Chem. Soc. Japan, 39, 1296 (1966).Google Scholar
  101. 72. a)
    R. Otto and A. Rosing, Chem. Ber., 2493 (1885).Google Scholar
  102. 72. b)
    R. Otto, ibid., 2504 (1885).Google Scholar
  103. 73.
    M. Kobayashi and M. Terao, Bull. Chem. Soc. Japan, 39, 1292 (1966).Google Scholar
  104. 74.
    M. Kobayashi, M. Terao, and A. Yamamoto, ibid., 39, 802 (1966).Google Scholar
  105. 75. a)
    E.P. Köhler and M.B. MacDonald, Amer. Chem. J., 22, 219 (1899).Google Scholar
  106. 75. b)
    H.T. Hookway, J. Amer. Chem. Soc., 71, 3240 (1949).Google Scholar
  107. 75. c)
    K. Schank, Annales, 702, 75 (1967).Google Scholar
  108. 76.
    M. Kobayashi, Bull. Chem. Soc. Japan, 39, 967 (1966).Google Scholar
  109. 77.
    M. Kobayashi and A. Yamamoto, ibid., 39, 961 (1966).Google Scholar
  110. 78.
    M. Kobayashi and R. Kiritani, ibid., 39, 1782 (1966).Bull. Chem. Soc. Japan Google Scholar
  111. 79.
    N.H. Nilsson, C. Jacobsen and A. Senning,J. Chem. Soc., (D), 314 (1971).Google Scholar
  112. 80. a)
    O. Achmatowicz and J. Michalski, Roczniki. Chem., 30, 243 (1956).Google Scholar
  113. 80. b)
    L. Kh. Fel’Dmann and V.N. Mikhailova, Zh. Obshch. Khim., 32, 944 (1962).Google Scholar
  114. 80. c)
    I. Kh. Fel’Dmann and V.N. Mikhailova, ibid, 33, 2111 (1963).Zh. Obshch. Khim. Google Scholar
  115. 80. d)
    V.N. Mikhailova, N. Borisova, and D. Stankevich, Zh. Organ. Khim., 2, 1437 (1966).Google Scholar
  116. 80. e)
    M.T. Beachem and J.T. Shaw, U.S.P., 3040, 088, June 19 (1962).Google Scholar
  117. 81.
    Y. Ogata, Y. Sawaki and M. Isono, Tetrahedron, 26, 3045 (1970).Google Scholar
  118. 82.
    H. Bredereck and E. Bäder, Chem. Ber., 87, 129 (1954).Google Scholar
  119. 83.
    L. Field and P.H. Settlage, J. Amer. Chem. Soc., 73, 5870 (1951).Google Scholar
  120. 84.
    H. Bredereck, E. Bäder, and G. Hoshele, Chem. Ber., 87, 784 (1954).Google Scholar
  121. 85.
    V. Mayer, J. Prakt. Chem., 63, 167 (1901).Google Scholar
  122. 86.
    G. Rewson and J.B.F.N. Engerts, Tetrahedron, 26, 5653 (1970).Google Scholar
  123. 87.
    E. Bäder and H.D. Hermann, Chem. Ber., 88, 41 (1955).Google Scholar
  124. 88. a)
    J.B.F.N. Engberts and J. Strating, Rec. Trav. Chim. Pays-Bas, 83, 733 (1964).Google Scholar
  125. 88. b)
    T.T. Gregory, U.S.P., 2659, 752, Nov. 17 (1953).Google Scholar
  126. 89.
    Ger.P., 832, 158, Feb. 21 (1952).Google Scholar
  127. 90.
    W.B. Price and S. Mües, J. Chem. Soc., 3154 (1928).Google Scholar
  128. 91.
    S. Pickholz, ibid., 685 (1946).J. Chem. Soc Google Scholar
  129. 92.
    Ger.P., 913, 179, June 10 (1954).Google Scholar
  130. 93.
    Y. Ogata, Y. Sawaki, and M. Isono, Tetrahedron, 26, 1731 (1970).Google Scholar
  131. 94.
    K.T. Finley, R.S. Kaiser, R.L. Reeves, and G. Werimont, J. Org. Chem., 34, 2083 T1969).Google Scholar
  132. 95. a)
    W. Bradley and J.D. Harmon, J. Chem. Soc., 2713 (1962).Google Scholar
  133. 95. b)
    W. Bradley and J.D. Hannön, ibid., 4438 (1962).J. Chem. Soc Google Scholar
  134. 96.
    S. Oae, T. Maeda and O. Yamada, unpublished data.Google Scholar
  135. 97.
    J.A. Sprung and W.A. Schmidt, U.S.P., 2, 513, 826.Google Scholar
  136. 98.
    S. Oae, O. Yamada, and T. Maeda, unpublished data.Google Scholar
  137. 99.
    K.K. Andersen, Tetrahedron Lett., 93, (1962).Google Scholar
  138. 100. a)
    K. Mislow, M.M. Green, P. Laur, J.T. Melillo, T. Simmons, and A.L. Terney, Jr., J. Amer. Chem. Soc., 87, 1958 (1965).Google Scholar
  139. 100. b)
    M. Axelrod, P. Bickart, J. Jacobus, M.M. Green, and K. Mislow, ibid., 90, 4835 (1968).J. Amer. Chem. Soc. Google Scholar
  140. 100. c)
    K.K. Andersen, W. Gaffield, N.E. Papanikoiaou, J.W. Foley, and R.I. Perkins, ibid., 86, 5637(1964).J. Amer. Chem. Soc. Google Scholar
  141. 101.
    M. Kobayashi and M. Terao, Bull Chem. Soc. Japan, 39, 1343 (1966).Google Scholar
  142. 102.
    C.C. Arcus, M.P. Balfe, and J. Kenyon, J. Chem. Soc., 485 (1938).Google Scholar
  143. 103.
    A.H. Wragg, J.S. McFadyen, and T.S. Stevens, ibid., 3603 (1958).J. Chem. Soc Google Scholar
  144. 104.
    A.C. Cope, D.E. Morrison, and L. Field, J. Amer. Chem. Soc., 72, 59 (1950).Google Scholar
  145. 105.
    D. Darwish and E.A. Preston, Tetrahedron Lett, 113 (1964).Google Scholar
  146. 106.
    D. Darwish and R. McLaren, ibid., 1231 (1962).Tetrahedron Lett Google Scholar
  147. 107.
    G. Smith and C.J.M. Stirling, J. Chem. Soc., (C), 1530 (1971).Google Scholar
  148. 108.
    A. Streitwiser, Jr., Chem. Revs., 56, 571 (1956).Google Scholar
  149. 109.
    C.A. Bunton and B.N. Henry, Chem. Ind., 466 (1960).Google Scholar
  150. 110. a)
    M. Kobayashi, private communication.Google Scholar
  151. 110. b)
    S. Oae and N. Kunieda, unpublished data.Google Scholar
  152. 111. a)
    M. Kobayashi, H. Minato, and Y. Ogi, Bull. Chem. Soc. Japan, 45, 1224 (1972).Google Scholar
  153. 111. b)
    C.A. Bunton and G. Schwerin, J. Org. Chem., 31, 842 (1966).Google Scholar
  154. 112.
    M. Kobayashi, A. Yabe, and R. Kiritani, Bull. Chem. Soc Japan, 39, 1785 1966.Google Scholar
  155. 113.
    M. Kobayashi and A. Yamamoto, ibid., 39, 2736 (1966).Bull. Chem. Soc Japan Google Scholar
  156. 114.
    M. Kobayashi and A. Yamamoto, ibid., 39, 2733 (1966).Bull. Chem. Soc Japan Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Shigeru Oae
    • 1
  • Norio Kunieda
    • 2
  1. 1.University of TsukubaIbaraki-kenJapan
  2. 2.Osaka City UniversitySumiyoshi-Ku, OsakaJapan

Personalised recommendations