Advertisement

Abstract

It was in 1912, at the University of Munich, that Friedrich and Knipping, following a suggestion from Max von Laue, produced the first X-ray diffraction pattern by irradiating a single crystal of ZnS with a beam of X-rays and photographing the resulting diffracted beams on a photographic plate placed behind the crystal [1, 2]. Analysis of these ‘Laue’ pictures proved difficult, however, and Bragg [3, 4], in 1913, introduced a simpler relationship which, as the ‘Bragg equation’, lies at the basis of most of our current X-ray diffraction studies.

Keywords

Reciprocal Lattice Diffract Beam Mass Absorption Coefficient Diffract Radiation Divergence Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. FRIEDRICH, P. KNIPPING and M. von LAUE, Sitz. math.-phys. Klasse bayer Akad. Wiss. München, 303 (1912).Google Scholar
  2. 2.
    M. von LAUE, Ann. Physik., 971 (1913).Google Scholar
  3. 3.
    W. L. BRAGG, Proc. Cambridge Phil. Soc., 17, 43 (1913).Google Scholar
  4. 4.
    W. L. BRAGG, Proc. Roy. Soc. London (A), 88, 43 (1913).CrossRefGoogle Scholar
  5. 5.
    M. SIEGBAHN, ‘Spektroskopie der Röntgenstrahlen’, Julies Springer, Berlin, 2nd ed., 1931.Google Scholar
  6. 6.
    J. A. BEARDEN, Phy. Rev., 48, 385 (1935).CrossRefGoogle Scholar
  7. 7.
    DEPARTMENT OF EMPLOYMENT AND PRODUCTIVITY, ‘Code of Practice for the protection of persons exposed to ionising radiations in research and teaching’, H.M.S.O., London, 1968.Google Scholar
  8. 8.
    Report of International Union of Crystallography, Acta Cryst., 16, 324 (1963).Google Scholar
  9. 9.
    H. P. KLUG and L. E. ALEXANDER, ‘X-ray Diffraction Procedures’, John Wiley and Sons, Inc., New York and London, 1954, Chapter 2.Google Scholar
  10. 10.
    K. NORRISH and B. W. CHAPPELL, ‘Physical Methods in Determinative Mineralogy’, J. Zussmann (ed), Academic Press, London and New York, 1967, Chapter 4.Google Scholar
  11. 11.
    J. ZUSSMAN, ‘Physical Methods in Determinative Mineralogy’, Academic Press, London and New York, 1967, Chapter 6.Google Scholar
  12. 12.
    G. W. BRINDLEY, ‘X-ray Diffraction by Polycrystalline Materials’, H. S. Peiser et al. (eds), Chapman and Hall, London, 1960, Chapter 4.Google Scholar
  13. 13.
    K. LONSDALE (ed), ‘International Tables for X-ray Crystallography’ Vols. I–III, International Union of Crystallography, Kynoch Press, Birmingham. 1962.Google Scholar
  14. 14.
    R. W. GOULD, S. R. BATES and C. J. SPARKS, Appl. Spectr., 22, 549 1968).CrossRefGoogle Scholar
  15. 15.
    M. von LAUE, Enzyklopädie der math. Wiss., 24, 359 (1915).Google Scholar
  16. 16.
    N. F. M. HENRY, H. LIPSON and W. A. WOOSTER, ‘The Interpretation of X-ray Diffraction Photographs’, Macmillan, London, 1960, Chapter 6.Google Scholar
  17. 17.
    P. EWALD, Zeits. Krist., 56, 148 (1921).Google Scholar
  18. 18.
    M. J. BUERGER, ‘X-ray Crystallography’, John. Wiley and Sons, Inc., New York and London, 1942, Chapters 6 and 7.Google Scholar
  19. 19.
    J. D. BERNAL, Proc. Roy. Soc. London (A), 113, 117 (1926).CrossRefGoogle Scholar
  20. 20.
    R. C. EVANS and H. S. VEISER, Proc. Phys. Soc., 54, 457 (1942).CrossRefGoogle Scholar
  21. 21.
    Copies, printed on transparent plastic sheet, are available from the Institute of Physics, 47 Belgrave Square, London.Google Scholar
  22. 22.
    N. F. M. HENRY, H. LIPSON and W. A. WOOSTER, ‘The Interpretation of X-ray Diffraction Photographs’, Macmillan, London, 1960, Chapter 3.Google Scholar
  23. 23.
    C. W. BUNN, ‘Chemical Crystallography’ Oxford, Clarendon Press, Oxford, 1961, p. 154.Google Scholar
  24. 24.
    A. H. COMPTON, Phys. Rev., 21, 715 (1923).Google Scholar
  25. 25.
    K. LONSDALE, (ed) ‘International Tables for X-ray Crystallography’ Vol. 1, International Union of Crystallography, Kynoch Press, Birmingham, 1962.Google Scholar
  26. 26.
    M. J. BUERGER, ‘Crystal Structure Analysis’, John Wiley and Sons, Inc., New York and London, 1960.Google Scholar
  27. 27.
    M. J. BUERGER, ‘Vector Space and its Application in Crystal Structure Determination’, John Wiley and Sons, Inc., New York and London, 1959.Google Scholar
  28. 28.
    G. RAMACHANDRAN (ed), ‘Advanced Methods of Crystallography’, Academic Press, London and New York, 1964.Google Scholar
  29. 29.
    H. LIPSON AND A. J. C. WILSON, J. Sci. Instrum., 18, 144 (1941).CrossRefGoogle Scholar
  30. 30.
    N. F. M. HENRY, H. LIPSON and W. A. WOOSTER, ‘Interpretation of X-ray Diffraction Photographs’, Macmillan, London and New York, 1960, 170ff.Google Scholar
  31. 31.
    A. E. VAN ARKEL, Physica, 6, 64 (1926).Google Scholar
  32. 32.
    A. J. BRADLEY and A. H. JAY, Proc. Phys. Soc., 44, 563 (1932).CrossRefGoogle Scholar
  33. 33.
    I. IEVINS and M. STRAUMANIS, Z. Phys. Chem., (B), 33, 165 (1936).Google Scholar
  34. 34.
    F. A. HILDEBRAND, Amer. Min., 38, 1050 (1953).Google Scholar
  35. 35.
    G. BROWN, G. C. DIBLEY and R. FARROW, Clay Miner. Bull., 3, 19 (1956).CrossRefGoogle Scholar
  36. 36.
    H. S. PEISER, H. P. ROOKSBY and A. J. C. WILSON, ‘X-ray Diffraction by Polycrystalline Materials’, Chapman and Hall, London, 1960, 72ff.Google Scholar
  37. 37.
    J. E. SEARS and A. TURNER, J. Sci. Instrum., 18, 17 (1941).CrossRefGoogle Scholar
  38. 38.
    ANON, University Equipment, September, 1972.Google Scholar
  39. 39.
    W. PARRISH and M. MACK, ‘Data for X-ray Analysis’, 2nd ed., Vols. 1–3, Philips Technical Library, Eindhoven, Netherlands, 1963.Google Scholar
  40. 40.
    A. TAYLOR, J. Sci. Instrum., 26, 201 (1951).Google Scholar
  41. 41.
    C. E. NOCKOLDS and R. H. KRETSINGER, J. Phys. E.: Sci. Instrum., 3, 842 (1970).CrossRefGoogle Scholar
  42. 42.
    A. GUINIER, Proc. Phys. Soc. (London), 57, 310 (1945).CrossRefGoogle Scholar
  43. 43.
    P. M. de WOLFF, Acta Cryst., 1, 206 (1948).Google Scholar
  44. 44.
    J. C. M. BRENTANO, Proc. Phys. Soc. (London), 49, 61 (1937).CrossRefGoogle Scholar
  45. 45.
    R. LINDEMANN and A. TROST, Z. Phys., 115, 456 (1940).CrossRefGoogle Scholar
  46. 46.
    H. FRIEDMAN, Electronics, 18(4), 132 (1945).Google Scholar
  47. 47.
    D. P. LE GALLEY, Rev. Sci. Instrum., 6, 279 (1935).CrossRefGoogle Scholar
  48. 48.
    W. P. DAVEY, F. R. SMITH and S. W. HARDING, Rev. Sci. Instrum., 15, 37 (1944).CrossRefGoogle Scholar
  49. 49.
    U. W. ARNDT, Ph.D. Dissertation, University of Cambridge, 1948.Google Scholar
  50. 50.
    W. SOLLER, Phys. Rev., 27, 158 (1924).CrossRefGoogle Scholar
  51. 51.
    U. W. ARNDT, ‘X-ray Diffraction by Polycrystalline Materials’, H. S. Peiser et al (eds), Chapman and Hall, London, 1960, Chapter 7.Google Scholar
  52. 52.
    H. W. KING, C. J. GILLHAM and F. G. HUGGINS, ‘Advances in X-ray Analysis’, 13, 550 (1970).Google Scholar
  53. 53.
    H. P. KLUG and L. E. ALEXANDER, ‘X-ray Diffraction Procedures’, John Wiley and Sons, Inc., New York and London, 1954, p. 290ff.Google Scholar
  54. 54.
    G. L. MCCREERY, J. Amer. Ceram. Soc., 32, 141 (1949).CrossRefGoogle Scholar
  55. 55.
    H. P. KLUG and L. E. ALEXANDER, ‘X-ray Diffraction Procedures’, John Wiley and Sons, Inc., New York and London, 1954, p. 315ff.Google Scholar
  56. 56.
    F. CHAYES and W. S. MACKENZIE, Amer. Miner, 42, 534 (1957).Google Scholar
  57. 57.
    A. J. C. WILSON, ‘Mathematical Theory of X-ray Powder Diffractometry’, Philips Technical Library, 1963.Google Scholar
  58. 58.
    W. PARRISH, J. M. TAYLOR and M. MACK, Advances in X-ray Analysis, 7, 66(1964).Google Scholar
  59. 59.
    I. G. EDMUNDS, H. LIPSON and H. STEEPLE, ‘X-ray Diffraction by Polycrystalline Materials’, H. S. Peiser et al. (eds), Chapman and Hall, London, 1960, Chapter 15.Google Scholar
  60. 60.
    G. KETTMAN, Z. Phys., 53, 198 (1929).CrossRefGoogle Scholar
  61. 61.
    P. SCHERRER, Gottinger Nachrichten, 2, 98 (1918).Google Scholar
  62. 62.
    J. B. NELSON and D. P. RILEY, Proc. Phys. Soc. (London), 57, 160 (1945).CrossRefGoogle Scholar
  63. 63.
    O. D. MCMASTERS and W. L. LARSEN, U.S.A.E.C. Rept. IS-683, Office of Tech. Serv., U.S. Dept. of Commerce, Washington 25, D.C. (1963).Google Scholar
  64. 64.
    E. STRUM and W. LODDING, Acta Cryst., A24, 650 (1968).Google Scholar
  65. 65.
    H. J. GOLDSCHMIDT, ‘High-temperature X-ray Diffraction Techniques, Bibliography 1’, I. U. Cr., Commission on Crystallographic Apparatus (1964).Google Scholar
  66. 66.
    J. W. EDWARDS, R. SPEISER and H. L. JOHNSTON, Rev. Sci. Instrum., 20, 343 (1949).CrossRefGoogle Scholar
  67. 67.
    H. J. GOLDSCHMIDT and J. CUNNINGHAM, J. Sci. Instrum., 27, 177 (1950).CrossRefGoogle Scholar
  68. 68.
    M. J. BUERGER, N. W. BUERGER and F. G. CHESLEY, A mer. Miner., 28, 285 (1943).Google Scholar
  69. 69.
    I. F. FERGUSON, U.K.A.E.A. Reactor Group Rept., TRG Rept. 2004(S) (1973).Google Scholar
  70. 70.
    H.-UDO LENNé, Z. Krist., 116,316(1961).CrossRefGoogle Scholar
  71. 71.
    D. B. MCEHAN, Trans. Amer. Cryst. Assoc., 5, 39 (1969).Google Scholar
  72. 72.
    J. C. JAMIESON and A. W. LAWSON, J. Appl. Phys., 33, 776 (1962).CrossRefGoogle Scholar
  73. 73.
    G. J. PIERMARINI and C. E. WEIR, J. Res. Nat. Bur. Stand., 66A, 325 (1962).Google Scholar
  74. 74.
    J. C. JAMIESON and B. OLINGER, Presented at Conf. on Accurate Characterisation of High Pressure Environment, N.B.S., Gaithersburg, Md. (1968).Google Scholar
  75. 75.
    E. A. PERCY-ALBUERNE, K. FORSGREN and H. G. DRICKAMER, Rev. Sci. Instrum., 35, 29 (1964).CrossRefGoogle Scholar
  76. 76.
    P. J. FREUD and C. B. SCLAR, Rev. Sci. Instrum., 40, 434 (1969).CrossRefGoogle Scholar
  77. 77.
    C. E. WEIR, G. J. PIERMARINI and S. BLOCK, Trans. Amer. Cryst. Assoc., 5, 105 (1969).Google Scholar
  78. 78.
    J.D. BARNETT and H. T. HALL, Rev. Sci. Instrum., 35, 175, (1964).CrossRefGoogle Scholar
  79. 79.
    J. D. BARNETT, J. PACK and H. T. HALL, Trans. Amer. Cryst. Assoc. 5, 113 (1969).Google Scholar
  80. 80.
    J. S. KASPER, J. E. HILLIARD, J. W. CAHN and V. A. PHILLIPS, Wadc Tech. Rept. No. 59–747, General Electric Coy., Schenectady, N.Y. (1960).Google Scholar
  81. 81.
    L. F. VERESCHAGIN, ‘Physics of Solids at High Pressures’, C. T. Tomizuku and R. M. Emrich (eds), Academic Press, London and New York, 1965.Google Scholar
  82. 82.
    H. O. A. MEYER, Indust. Diamond Rev., 25, 443 (1965).Google Scholar
  83. 83.
    B. L. DAVIA and L. H. ADAMS, J. Phys. Chem. Solids, 25, 379 (1964).CrossRefGoogle Scholar
  84. 84.
    P. J. FREUD and P. N. MORI, Trans. Amer. Cryst. Assoc., 5, 155 (1969).Google Scholar
  85. 85.
    V. VAND and G. G. JOHNSON, ‘Fortran IV Programs (Version X) for the identification of multiphase powder diffraction patterns’, ASTM, Philadelphia, 1969.Google Scholar
  86. 86.
    A. W. NICOL, Nature, 218, 674 (1968).CrossRefGoogle Scholar
  87. 87.
    A. W. NICOL, Res. and Dev. Rept., Publ. No. 68–18300/15–001, University of Birmingham (1970).Google Scholar
  88. 88.
    K. YVON, W. JEITSCHKO and E. PARTHE, Tech. Rept., Lab. for Res. on Structure of Matter, Univ. of Pennsylvania (1969).Google Scholar
  89. 89.
    O. D. MCMASTERS and W. L. LARSEN, U.S.A.E.C. Rept. IS-839, Office of Tech. Serv., U.S. Dept. of Commerce, Washington 25, D.C. (1964).Google Scholar
  90. 90.
    T. ITO, Nature, 164, 755 (1949).CrossRefGoogle Scholar
  91. 91.
    B. DELAUNAY, Z. Krist., 84, 132 (1933).Google Scholar
  92. 92.
    J. W. VISSER, J. Appl. Cryst., 2, 85 (1969).Google Scholar
  93. 93.
    O. LINDQVIST and F. WENGELIN, Ark. Kemi, 28, 179 (1967).Google Scholar
  94. 94.
    R. P. ELLIOTT, Advances in X-ray Analysis, 8, 134 (1965).Google Scholar
  95. 95.
    G. KATZ, Ph.D. Thesis, Pennsylvania State University, 1965; ‘Univ. Microfilms’, Ann Arbor, Mich., Order No. 66–4821, 184pp.; Dissertation Abstr., 26, 6806 (1966).Google Scholar
  96. 96.
    G. W. BRINDLEY and F. W. SPIERS, Proc. Phys. Soc., 50, 17 (1938).CrossRefGoogle Scholar
  97. 97.
    A. W. HULL, J. Amer. Chem. Soc., 41, 1168 (1919).CrossRefGoogle Scholar
  98. 98.
    G. L. CLARK and D. H. REYNOLDS, Ind. Eng. Chem., Anal. Ed., 8, 36 (1936).CrossRefGoogle Scholar
  99. 99.
    L. ALEXANDER and H. P. KLUG, Anal. Chem., 20, 886 (1948).CrossRefGoogle Scholar
  100. 100.
    G. W. BRINDLEY, Phil. Mag., 35, 638 (1944);Google Scholar
  101. 100a.
    G. W. BRINDLEY, Phil. Mag., 36, 347 (1945).Google Scholar
  102. 101.
    H. P. KLUG and L. ALEXANDER, ‘X-ray Diffraction Procedures’, John Wiley and Sons, Inc., New York and London, 1954, Chapter 7.Google Scholar
  103. 102.
    T. BARRY, V. STUBICAN and R. ROY, J. Amer. Ceram. Soc., 50, 375 (1967).CrossRefGoogle Scholar
  104. 103.
    J. J. VISSER, JCPDS Powder Defraction File, Search Manual Alphabetical Listing, Inorganic Compounds, SMA-73, p. 655, 1973.Google Scholar
  105. 104.
    N. F. M. HENRY, H. LIPSON and W. A. WOOSTER, ‘The Interpretation of X-ray Diffraction Photographs’, Macmillan, London, 1960, Chapter 16.Google Scholar
  106. 105.
    M. VON LAUE, Z.Krist., 64, 115 (1926).Google Scholar
  107. 106.
    H. P. KLUG and L. ALEXANDER, ‘X-ray Diffraction Procedures’, John Wiley and Sons, Inc., New York and London, 1954, Chapter 9.Google Scholar
  108. 107.
    Advances in X-ray Analysis, Procs. Annual Confs., Denver, 1957–72, Plenum Press, New York, Vols. 1–18.Google Scholar
  109. 108.
    A. R. STOKES, Proc. Phys. Soc., (London), 61, 382 (1948).CrossRefGoogle Scholar
  110. 109.
    B. E. WARREN, J. Appl. Phys., 12, 375 (1941).CrossRefGoogle Scholar
  111. 110.
    F. W. JONES, Proc. Roy. Soc., 166A, 16 (1938).Google Scholar
  112. 111.
    B. E. WARREN and B. L. AVERBACH, J. Appl. Phys., 23, 497 (1952).CrossRefGoogle Scholar
  113. 112.
    B. E. WARREN, Prog. in Metal Phys., 8, 147 (1959).CrossRefGoogle Scholar
  114. 113.
    R. L. ROTHMAN and J. B. COHEN, Advances in X-ray Analysis, 12, 208 (1968).Google Scholar
  115. 114.
    C. P. GAZZARA, J. J. STIGLICH JR., F. P. MEYER and A. M. HANSEN, Advances in X-ray Analysis, 12, 257 (1968).Google Scholar
  116. 115.
    A. GUINIER and G. FOURNET, ‘Small Angle Scattering of X-rays’, John Wiley and Sons, Inc., New York and London, 1955.Google Scholar
  117. 116.
    V. GEROLD, ‘Small Angle X-ray Scattering’, H. Brumberger (ed), Gordon and Breach, New York, 1955, p. 277.Google Scholar
  118. 117.
    S. D. HARKNESS, R. W. GOULD and J.J. HREN, Phil. Mag., 19, 115 (1969).CrossRefGoogle Scholar
  119. 118.
    R. JENKINS, D. J. HAAS and F. R. PAOLINI, Norelco Reporter, 18, 12 (1972).Google Scholar
  120. 119.
    C. W. BUNN, ‘Chemical Crystallography’, Oxford, Clarendon Press, Oxford, 1961, Chapter 6.Google Scholar
  121. 120.
    N. F. M. HENRY, H. LIPSON and W. A. WOOSTER, ‘The Interpretation of X-ray Diffraction Photographs’, Macmillan, London, 1960, Chapter 7.Google Scholar
  122. 121.
    M. J. BUERGER, ‘The Precession Method in X-ray Crystallography’, John Wiley and Sons, Inc., New York and London, 1964.Google Scholar
  123. 122.
    E. R. WOLFEL, J. Appl. Cryst. 4, 297 (1971).CrossRefGoogle Scholar
  124. 123.
    I. LEFKOWITZ and H. MEGAW, Acta Cryst., 16, 453 (1963).CrossRefGoogle Scholar
  125. 124.
    K. O. RICKSON, C. B. HALL and J. D. C. MCCONNEL, J. Sci. Instr., 40, 420 (1963).CrossRefGoogle Scholar
  126. 125.
    C. W. BUNN, ‘Chemical Crystallography’, Oxford, Clarendon Press, Oxford, 1961, Chapter 7.Google Scholar
  127. 126.
    M. J. BUERGER, ‘X-ray Crystallography’, John Wiley and Sons, Inc., New York and London, 1942, Chapter 22.Google Scholar
  128. 127.
    J. M. STEWART, G. J. KRUGER, H. L. AMMON, C. DICKINSON and F. R. HALL, Tech. Rept. TR192, Univ. Maryland Computer Sci. Center, College Park, Md., June 1972.Google Scholar
  129. 128.
    F. R. AHMED, ‘Crystallographic Computing’, Munksgaard, Copenhagen, 1970, p. 309.Google Scholar
  130. 129.
    R. HENDRIQUES, Ph.D. Thesis, London, 1972.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • A. W. Nicol
    • 1
  1. 1.Department of Minerals EngineeringUniversity of BirminghamBirminghamEngland

Personalised recommendations