Radiotracers in Minerals Engineering

  • V. I. Lakshmanan
  • G. J. Lawson


Radioisotopes and general radiochemical techniques find a multitude of uses in the mineral processing and metallurgical industries, for two principal reasons. Both are based on the simplicity of detecting the radiation emitted by radioisotopes and of using the radiation not only to identify the radioisotope involved but also to measure its concentration in the system being monitored. Thus, on the one hand, a radioactive isotope may be introduced into a reacting system and, because the isotope will behave chemically in a manner identical to all the other isotopes of the same element present, it then becomes possible to follow the reaction without chemically interfering with the system in any way. This ability may be crucial, for example in studying, surface reactions such as froth flotation, where the concentrations of the reagents involved are very small; in studies involving interchange between the solid and the gas phase, as in many processes in pyrometallurgy; or in studies of solvent extraction or ion exchange methods. On the other hand, the fact that many non-radioactive isotopes can be converted into a radioactive form, in situ, can provide a sensitive, non-destructive method of detecting very small concentrations of these elements.


Activation Analysis Neutron Activation Analysis Neutron Source Mineral Engineer Radiochemical Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. FRIEDLANDER, J. W. KENNEDY and J. M. MILLER, ‘Nuclear and Radiochemistry’ (John Wiley and Sons, Inc., New York and London, 1966).Google Scholar
  2. 2.
    M. B. A. CRESPI, Pure Appl. Chem., 26, 259(1971).Google Scholar
  3. 3.
    N. FEATHER, Proc. Camb. Phil. Soc., 34, 599 (1938).Google Scholar
  4. 4.
    G. von HEVESEY and H. LEVI, Kgl. Danske Videnskab Mat. fys. Medd., 14, 5(1936).Google Scholar
  5. 5.
    G.T. SEABORG and J. J. LIVINGHOOD, J. Am. Chem. Soc., 60, 1784 (1938).Google Scholar
  6. 6.
    A. A. GRIENBERG, Achievements in Chem., 9, 771 (1940).Google Scholar
  7. 7.
    J. L. STRAIN, IAEA. Conf. Radiochem. Methods of Anal., Salzburg, SM 55/48 (1965).Google Scholar
  8. 8.
    A. ZEMANN, Sbornik Ref. Sem. Aktiv. Anal. Modrg. (Czechoslovakia), 14(1963).Google Scholar
  9. 9.
    W. W. MEINKE, Anal. Chem., 30, 686 (1958).Google Scholar
  10. 10.
    Y. KUSAKA, Zeits. Anal. Chem., 172, 199 (1960).Google Scholar
  11. 11.
    A. J. MOSES, ‘Nuclear Techniques in Analytical Chemistry’ (Pergamon Press, Oxford, 1964).Google Scholar
  12. 12.
    O. REIFENSCHWEILER, Proc. Int. Conf. on Modern Trends in Activation Anal., Gaithersburg, Maryland. paper 20 (1968).Google Scholar
  13. 13.
    J. E. STRAIN, Prog. in Nucl. Energy, Ser IX, 4, 137 (1965).Google Scholar
  14. 14.
    J. D. BUCHANAN, Atomparxis, 8, 272 (1962).Google Scholar
  15. 15.
    V. P. GUINN, Proc. IAEA Seminar Prod. and Use Short Lived Radioisotopes from Reactors, Vienna, 2, 3 (1962).Google Scholar
  16. 16.
    W. W. MEINKE, Anal Chem., 31, 792 (1959).Google Scholar
  17. 17.
    H. J. M. BOWEN and D. GIBBONS, ‘Radioactivation Analysis’ (Oxford, Clarendon Press, Oxford, 1963).Google Scholar
  18. 18.
    G. LELIAERT, J. HOSTE and Z. EECKAUT, Nature, 182, 600 (1958).Google Scholar
  19. 19.
    J. HOSTE, F. BOUTEN and F. ADAMS, Nucleonics, 19(3), 118 (1961).Google Scholar
  20. 20.
    W. W. MEINKE, Proc. Int. Conf. on Modern Trends in Activation Anal, College Station, Texas, paper 36, (1961).Google Scholar
  21. 21.
    J. RUZICKA and J. STARY, Talanta, 10, 287 (1963).Google Scholar
  22. 22.
    J. STARY, J. RUZICKA and A. ZEMANN, Anal Chirn. Acta, 29, 103 (1963).Google Scholar
  23. 23.
    D. F. COVELL, Anal. Chem., 31, 1785 (1959).Google Scholar
  24. 24.
    W. D. EHMANN, Fortschr. Chem. Forsch., 14, 49 (1970).Google Scholar
  25. 25.
    W. E. KUYKENDALL JR, R. E. WAINERDI and ASSOCIATES, Proc. Use Radioisotopes Phys. Sci. and Ind., Copenhagen, 233 (1960).Google Scholar
  26. 26.
    W. E. KUYKENDALL JR. and R. E. WAINERDI, Trans. Amer. Nucl. Soc., 3, 95(1960).Google Scholar
  27. 27.
    O. U. andERS and W. H. BEAMER, Anal. Chem., 33, 226 (1961).Google Scholar
  28. 28.
    J. W. NOSTRand JR, A. J. FAVELE, H. WINTON and M. D. D’ABOSTINO, Trans. Amer. Nucl. Soc., 3, 412 (1960).Google Scholar
  29. 29.
    W. R. BURRUS, Trans. Amer. Nucl Soc., 6, 173 (1963).Google Scholar
  30. 30.
    D. L. MORRISON and D. N. SUNDERMAN, Trans. Amer. Nucl. Soc., 6, 174(1963).Google Scholar
  31. 31.
    J. W. WINCHESTER and J. A. CATAGGIO, Proc. Use Nucl. Tech. Prospecting and Development Min. Resources, IAEA, Buenos Aires, 435 (1968).Google Scholar
  32. 32.
    H. P. YULE, Anal Chem., 37, 37 (1965).Google Scholar
  33. 33.
    E. N. JENKINS and A. A. SMALES, Quart. Rev. Chem. Soc., 10, 83 (1956).Google Scholar
  34. 34.
    A. K. DE and W. W. MEINKE, Anal Chem., 30, 1474 (1958).Google Scholar
  35. 35.
    S. C. MATHUR and G. OLDHAM, Nucl Energy, 136 (1967).Google Scholar
  36. 36.
    W. E. MOTT and J. M. ORANGE, Anal Chem, 37, 1338 (1965).Google Scholar
  37. 37.
    J. D. MAHONY and S. S. MARKOVITZ, Anal. Chem., 33, 329 (1961).Google Scholar
  38. 38.
    H. R. LUKENS, J. W. OTVOS and C. D. WAGNER, Int. J. Appl. Radiation Isotopes, 11, 30(1961).Google Scholar
  39. 39.
    J. W. OTVOS, V. P. GUINN, H. R. LUKENS and C. D. WAGNER, Nucl Instr. Methods, 11, 187 (1961).Google Scholar
  40. 40.
    R. C. GREENWOOD and J. REED, Proc. Int. Conf. on Modem Trends in Activation Anal, College Station, Texas, paper (1961).Google Scholar
  41. 41.
    T. B. PIERCE, P. F. PECK and W. M. HENRY, Nature, 204, 571 (1964).Google Scholar
  42. 42.
    T. B. PIERCE, P. F. PECK and W. M. HENRY, Analyst, 90, 339 (1965).Google Scholar
  43. 43.
    J. W. HAFFNER and D. OESTREICH, Trans. Amer. Nucl. Soc., 5, 290 (1962).Google Scholar
  44. 44.
    G. von HEVESEY and F. A. PANETH, ‘Radioactivity’ (Oxford, Clarendon Press, Oxford, 1938).Google Scholar
  45. 45.
    H. BEQUEREL, Compt. Rend., 122, 1086 (1896).Google Scholar
  46. 46.
    M. M. SHAPIRO, Rev. Mod. Phys., 13, 58 (1941).Google Scholar
  47. 47.
    J. H. WEBB, Phys. Rev., 74, 511 (1948).Google Scholar
  48. 48.
    H. YAGODA, ‘Radioactive Measurements with Nuclear Emulsions’ (John Wiley and Sons, Inc., New York and London, 1949).Google Scholar
  49. 49.
    A. BIESER, Mod. Phys., 24, 273 (1952).Google Scholar
  50. 50.
    W. P. NORRIS and L. A. WOODRUFF, Ann. Rev. Nucl. Sci., 5, 297 (1955).Google Scholar
  51. 51.
    Y. GOLDSCHMIDT-CLERMONT, Ann. Rev. Nucl Sci., 3, 141 (1953).Google Scholar
  52. 52.
    P. J. FITZGERALD, E. B. SIMMEL, J. WENSTEIN and C. MARTIN, Lab. Invest., 2, 181 (1953).Google Scholar
  53. 53.
    J. GROSS, R. BOGOROCH, N. J. NADLER and C. P. LEBLOND, Amer. J. Roentg. Radium Therapy, 65, 420 (1951).Google Scholar
  54. 54.
    S. H. U. BOWIE, ‘Physical Methods in Determinative Mineralogy’, J. Zussmann (ed) (Academic Press, London and New York, 1967), Chapter 12.Google Scholar
  55. 55.
    S. H. U. BOWIE, Bull. Geol. Surv. Gt. Brit., 3, 58 (1951).Google Scholar
  56. 56.
    P. B. PRICE and R. M. WALKER, Appl. Phys. Lett., 2, 23 (1963).Google Scholar
  57. 57.
    R. F. FLEISCHER, C. W. NAESER, P. B. PRICE, R. M. WALKER and U. B. MARWIN, Science, 148, 629(1965).Google Scholar
  58. 58.
    D. E. FISHER and K. BOSTRUM, Nature, 224, 64 (1969).Google Scholar
  59. 59.
    V. MURALI, P. P. PAREKH and M. SANKARDAS, Anal. Chim. Acta, 50, 71 (1970).Google Scholar
  60. 60.
    J. W. WINCHESTER, ‘Radioactivation Analysis in Inorganic Geochemistry’, Prog. in Inorg. Chem., Vol. 2, F. A. Cotton (ed), (Interscience, New York, 1960).Google Scholar
  61. 61.
    G. H. MORRISON (ed), ‘Trace Analysis, Physical Methods’ (Inter-science, New York, 1960).Google Scholar
  62. 62.
    M. PINTA, ‘Detection and Determination of Trace Elements’ (Daniel Davey, New York, 1966).Google Scholar
  63. 63.
    W. W. MEINKE and B. F. SCRIBNER (editors), ‘Trace Characterization, Chemical and Physical’, U.S.N.B.S. Monograph 10D, Washington, D.C. (1967).Google Scholar
  64. 64.
    N. D. CHERONIS (ed), ‘Submicrogram Experimentation’ (Interscience, New York, 1961).Google Scholar
  65. 65.
    T. B. PIERCE, Sec. Symp. Rec. Devel. Neutron Activation Anal, Cambridge, U.K., 3(1971).Google Scholar
  66. 66.
    R. W. TOLMIE and L. J. THOMPSON, Proc. Symp. Use Nucl. Tech. Prospecting and Development of Min. Resources, IAEA, Buenos Aires, 504(1968).Google Scholar
  67. 67.
    R. E. WAINERDI, E. A. UKEN, G. G. SANTOS and H. P. YULE, Ibid, 533.Google Scholar
  68. 68.
    G. E. GORDON, K. RandLE, G. G. GOLE, J. B. CORLISS, M. H. BEESON and S. S. OXLEY, Geochim. Cosmochim. Acta, 32, 369 (1968).Google Scholar
  69. 69.
    M. RAKOVIC, ‘Activation Analysis’ (Iliffe, London, 1970).Google Scholar
  70. 70.
    L. LOVBERG, H. KUNZENDORF and J. HANSEN, Proc. Symp. Use Nucl. Tech. Prospecting and Development of Min. Resources, IAEA, Buenos Aires, 197 (1968).Google Scholar
  71. 71.
    J. H. CZUBEK, Ibid, 3.Google Scholar
  72. 72.
    C. W. TITTLE, Proc. Symp. Radioisotope Instr. Ind. Geophys., IAEA, Warsaw, 3(1968).Google Scholar
  73. 73.
    A. PRADZYNSKI, Proc. Symp. Use Nucl. Tech. Prospecting and Development Min. Resources, IAEA, Buenos Aires, 451 (1968).Google Scholar
  74. 74.
    A. M. GAUDIN, Trans. I. M. M., 62, 29 (1952).Google Scholar
  75. 75.
    T. C. MARTIN, Trans. Amer. Nucl. Soc., 6, 181 (1963).Google Scholar
  76. 76.
    C. POOVEY and D. Q. COVAULT, Georgia Inst. Tech., Eng. Exptl. Station, Atlanta, Publ. SRO-47 (1961).Google Scholar
  77. 77.
    R. LIEBERMAN, C. W. TOWNLEY, C. T. BROWN, J. E. HOWES JR, R. E. EWING and D. N. SUNDERMAN, Battelle Memorial Inst., Columbus, Ohio, Publ. BMI-1505 (1961).Google Scholar
  78. 78.
    H. HAMAGUCHI, R. KURODA, T. SHIMIZU, R. SUGISITA, I. TSUKAHARA and R. YAMAMOTA, Nippon Genshirhoku Gekkaishi, 3, 800(1961).Google Scholar
  79. 79.
    G. C. GOODE, C. W. BAKER and N. M. BROOKE, Analyst, 94, 728 (1969).Google Scholar
  80. 80.
    A. V. TOPCHIEV, I. T. ALADIEV and P. S. SAVITSKI, Proc. Sec. Int. Conf. Peaceful Uses of Atomic Energy, Geneva, 19, 61 (1958).Google Scholar
  81. 81.
    A. B. TESMAN, Metal Prog., 115(1959).Google Scholar
  82. 82.
    M. SERIZAWA, Tetsu to Hagane, 43, 938 (1957).Google Scholar
  83. 83.
    T. WINKLER and J. CHAPMAN, Amer. Inst. Min. Eng. Tech. Publ. 1987(1946).Google Scholar
  84. 84.
    I. S. KULIKOV and A. A. ZHOKHOVITSKY, Prod. and Treat. of Steel, Vol. XXXII of Collected Works of Stalin Inst. Moscow, State Metalle Publ. Houses 54 (1954).Google Scholar
  85. 85.
    I. N. PLAKSIN, Annals Acad. Sci. U.S.S.R., Dept. Tech, Sci., 1, 109 (1955).Google Scholar
  86. 86.
    J. FODOR and C. VARGA, Proc. Sec. Int. Conf. Peaceful Uses Atomic Energy, 19, 231 (1958).Google Scholar
  87. 87.
    T. SAITO, Proc. Sec. Int. Conf. Peaceful Uses Atomic Energy, 19, 201 (1958).Google Scholar
  88. 88.
    M. S. BELTSKY and V. P. MATCHOVETZ, Tzvetnce Metalle, xx, (1955).Google Scholar
  89. 89.
    U. A. LUOTA, Nag. Symp. Instr. Ind. Sparamn., Teck. foren. Fin. forhandl, 5 (1957).Google Scholar
  90. 90.
    U. BEEN and E. SAELand, Proc. First Int. Conf. Peaceful Uses Atomic Energy, 15, 170(1955).Google Scholar
  91. 91.
    A. M. GAUDIN, H. R. SPEDDEN and M. P. CORRIVEAU, Min. Eng., 3, 780(1951).Google Scholar
  92. 92.
    A. M. GAUDIN and C. S. CHANG, Trans. Amer. Inst. Min. Met. Engrs., 193, 193(1952).Google Scholar
  93. 93.
    A. M. GAUDIN, D. W. FUERSTENAU and M. M. TURKANUS, Min. Eng., 9, 65(1957).Google Scholar
  94. 94.
    O. S. BOGDANOV, B. Y. HAINMAN, M. A. YANIS and A. K. PODNEK, Proc. Int. Conf. Radioisotopes Sci. Res., Paris, P/72 (1957).Google Scholar
  95. 95.
    I. N. PLAKSIN, Proc. Sec. Int. Cong. Surf. Act. Butterworths, London, 1957.Google Scholar
  96. 96.
    I. N. PLAKSIN, R. SH. SHAFEEV and S. P. ZAITSEVA, Dokl. Akad. Nauk S.E.S.R., 108, 905(1956).Google Scholar
  97. 97.
    I. N. PLAKSIN, Proc. Conf. Use Radioisotopes Phys. Sci. and Ind., IAEA, Copenhagen, 1, 483 (1960).Google Scholar
  98. 98.
    I. N. PLAKSIN, Proc. Sec. Int. Conf. Peaceful Uses Atomic Energy, 19, 249(1958).Google Scholar
  99. 99.
    Y. P. GUPTA and T. B. KING, Trans. Met. Soc. AIME, 238, 1701 (1967).Google Scholar
  100. 100.
    P. G. SHEWMAN and F. N. RHINES, J. Metals, 6, 1021 (1954).Google Scholar
  101. 101.
    B. BROOK, A. ZAVYALOV and G. KAPIRIN, Proc. Sec. Int. Conf Peaceful Uses Atomic Energy, 19, 219 (1958).Google Scholar
  102. 102.
    H. L. TAVERES, P. E. AUN, A. A. MAESTRINI and M. T. MAGALHAES, Proc. Third Int. Conf Peaceful Uses Atomic Energy, 15, 341 (1965).Google Scholar
  103. 103.
    T. B. PIERCE, Selected Ann. Rev. Anal. Sci., 1, 133 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • V. I. Lakshmanan
    • 1
  • G. J. Lawson
    • 1
  1. 1.Department of Minerals EngineeringUniversity of BirminghamBirminghamEngland

Personalised recommendations