Introduction, Basic Theory and Concepts

  • A. W. Nicol
  • V. I. Lakshmanan


The analysis and characterisation of materials by physicochemical methods depends almost entirely on our ability to detect and measure the interaction between the substance under study and some form of electromagnetic radiation, and to relate this interaction to the various processes that can occur within the material. In general we may monitor either the emission of radiation from the material, as in emission spectroscopy, or the absorption of radiation by the material, as in absorption spectrography and thermal methods, or the conversion of one type of radiation into another, as in optical and X-ray fluorescence, or the diffraction of radiation, as in X-ray and electron diffraction. Spark source mass spectroscopy differs somewhat from the other techniques discussed herein, because the measured effect results from the interaction of charged particles with the magnetic field through which they move. The form of the interaction clearly varies for the different techniques which will be considered in other chapters, and it is the aim of this book not only to give an introduction to a group of the more important physicochemical methods currently available, but also to provide some of the theoretical background to the methods in the hope that this will permit a more reasoned and efficient use to be made of them.


Electromagnetic Radiation Basic Theory Scintillation Counter Atomic Orbital High Energy State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. PLANCK, Verh. Deut. Phys. Ges., 2, 237 (1900);Google Scholar
  2. 1a.
    M. PLANCK, Ann. Phys. 4, 553 (1901).CrossRefGoogle Scholar
  3. 2.
    A. EINSTEIN, Ann. Phys., 17, 132 (1905).CrossRefGoogle Scholar
  4. 3.
    N. BOHR, Phil. Mag. Ser 6, 26 476 857 (1913).Google Scholar
  5. 4.
    E. RUTHERFORD, Phil. Mag., Ser. 6, 21, 669 (1911).Google Scholar
  6. 5.
    W. RITZ, Phys. Zeitschr., ix, 521 (1908).Google Scholar
  7. 6.
    W. PAULI, Z. Physik, 31, 765 (1925).CrossRefGoogle Scholar
  8. 7.
    S. GLASSTONE, ‘Textbook of Physical Chemistry’, Macmillan, London, 1962.Google Scholar
  9. 8.
    B. H. MAHAN, ‘University Chemistry’, Addison-Wesley, Reading, Mass., 1967.Google Scholar
  10. 9.
    L. PAULING, ‘The Nature of the Chemical Bond’, 3rd ed., Cornell University Press, Ithaca, N.Y., 1960.Google Scholar
  11. 10.
    N. MOTT, ‘Materials (A Scientific American Book)’ (G. Piel, D. Flanagan, et al., eds.), Chap. 2, W. H. Freeman & Co., San Francisco and London, 1967.Google Scholar
  12. 11.
    H. J. EMELEUS and J. S. andERSON, ‘Modern Aspects of Inorganic Chemistry’, 3rd ed. Routledge and Kegan Paul, London, 1960.Google Scholar
  13. 12.
    A. F. WELLS, ‘Structural Inorganic Chemistry’, 3rd ed. Oxford, Clarendon Press, Oxford, 1962, p.86.Google Scholar
  14. 13.
    A. F. WELLS, Ibid., p.881.Google Scholar
  15. 14.
    J. H. VAN VLECK and A. FRANK, Phys. Rev., 34, 1494, 1625 (1929).CrossRefGoogle Scholar
  16. 15.
    H. BETHE, Ann. Phys., 5, 135 (1929).Google Scholar
  17. 16.
    J. H. VAN VLECK, Phys. Rev., 41, 208 (1932);CrossRefGoogle Scholar
  18. 16a.
    J. H. VAN VLECK, ‘Theory of Electric and Magnetic Susceptibilities’, Oxford, Clarendon Press, Oxford, 1932.Google Scholar
  19. 17.
    F. A. COTTON and G. WILKINSON, ‘Advanced Inorganic Chemistry’, 2nd ed., Interscience, New York, 1966, Chapters 3 and 26.Google Scholar
  20. 18.
    C. J. BALHAUSEN, ‘Ligand Field Theory’, McGraw-Hill, New York, 1962.Google Scholar
  21. 19.
    L. E. ORGEL, ‘Introduction to Transition Metal Chemistry’, Methuen, London, 1960.Google Scholar
  22. 20.
    R. G. BURNS, ‘Mineralogical Applications of Crystal Field Theory’, Cambridge University Press, Cambridge, 1970.Google Scholar
  23. 21.
    E. W. WHITE, Amer. Mineral., 49, 196 (1964).Google Scholar
  24. 22.
    J. C. MAXWELL, Phil. Mag., Ser. 4, 19, 19; 20, 21 (1860);Google Scholar
  25. 22a.
    J. C. MAXWELL, Phil. Mag., 32, 390 (1866).Google Scholar
  26. 23.
    L. BOLTZMANN, Sitz. Acad. Wiss., Wien, 66, 275 (1872);Google Scholar
  27. 23a.
    L. BOLTZMANN, Wiss. Abhandl, I, J. A. Barth, Leipzig, 1909, p.316.Google Scholar
  28. 24.
    S. N. BOSE, Z. Physik, 26, 44 (1924).CrossRefGoogle Scholar
  29. 25.
    A. EINSTEIN, Sitz. preuss. Akad. Wiss., 1924, 261; 1925, 1, 18.Google Scholar
  30. 26.
    P. A. M. DIRAC, Proc. Roy. Soc. London, A112, 661 (1926).Google Scholar
  31. 27.
    M. R. CLELand, P. R. HANLEY and C. C. THOMPSON. I.E.E.E. Trans. on Nucl. Sci. NS-16, No. 3, 113 (1969).CrossRefGoogle Scholar
  32. 28.
    K. J. SCOTT, Trans. I.M.M., C, 77, 85 (1968).Google Scholar
  33. 29.
    E. MCIVER, Ph.D, Thesis, Cambridge, 1960.Google Scholar
  34. 30.
    C. E. KENNETH MEES and T. H. JAMES (editors), ‘The Theory of the Photographic Process’, Macmillan, New York, 1966.Google Scholar
  35. 31.
    F. H. SandERS, Phys. Rev., 41, 667 (1932).CrossRefGoogle Scholar
  36. 32.
    G. DEARNALEY and D. C. NORTHROP, ‘Semiconductor Counters for Nuclear Radiations’, E. & F. N. Spon, London, 1966.Google Scholar
  37. 33.
    R. JENKINS and J. L. DE VRIES, ‘Practical X-ray Spectrometry’, 2nd ed., Philips Technical Library, Macmillan, London, 1970.Google Scholar
  38. 34.
    G. L. MILLER, W. M. GIBSON and P. F. DONOVAN, Ann. Rev. Nucl. Sci., 12, 189(1962).CrossRefGoogle Scholar
  39. 35.
    A. J. TAVENDALE, I.E.E.E. Trans. Nucl. Sci., NS-11, No. 3, 191 (1964).CrossRefGoogle Scholar
  40. 36.
    I. C. BROWNRIDGE, ‘Lithium-drifted Germanium Detectors, an annotated bibliography’, IFI/Plenum, New York and London, 1972.CrossRefGoogle Scholar
  41. 37.
    D. MAEDOR, ‘Methods of Experimental Physics’, Vol. 2 (E. Bleuler and R. O. Haxby, eds.), Academic Press, New York and London, 1964; Chapter 9, p.593.Google Scholar
  42. 38.
    W. HANDLEY (editor), ‘Industrial Safety Handbook’, McGraw-Hill, Maidenhead, 1969.Google Scholar
  43. 39.
    DEPARTMENT OF EMPLOYMENT AND PRODUCTIVITY, ‘Code of Practice for the protection of persons exposed to ionising radiations in research and teaching’, H.M.S.O., London, 1968.Google Scholar
  44. 40.
    Report of International Union of Crystallography, Acta Cryst., 16, 324 (1963).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • A. W. Nicol
    • 1
  • V. I. Lakshmanan
    • 1
  1. 1.Department of Minerals EngineeringUniversity of BirminghamBirminghamEngland

Personalised recommendations