Lithium Donors and the Binding of Excitons at Neutral Donors and Acceptors in Gallium Phosphide

  • P. J. Dean


Two interstitial Li donors have heen identified in GaP through the photoluminescence spectra they induce. Donor A exhibits bound exciton and d-a pair luminescence with weak no-phonon lines and is shallow, ionization energy ED~56 meV, like a Ga-type donor. Donor B is deeper, ED = 88.3 ± 0.5 meV and generates strong no-phonon luminescence, like a P-type donor. Zeeman splittings of the lower energy bound exciton no-phonon line show that donor B has symmetry with <lll> axis, a novel situation for donor-exciton luminescence in GaP. The values of the exciton localization energy EBX for these shallow Li donors enable the trend of EBX vs. ED to be established firmly for the first time in GaP. Pronounced deviations from the Haynes’ rule form found in Si are noted and are given a qualitative interpretation in terms of a difference in the appropriate mass ratio me/mh for GaP and Si.


Neutral Donor Phonon Replica Magnetic Splitting Gallium Phosphide Exciton Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Reiss and C. S. Fuller, “Semiconductor,” ed. N. B. Hannay, Reinhold, New York (1959), Ch. VI. M. Waldner, M. A. Hiller and W. G. Spitzer, Phys. Rev.140, A172 (1965).Google Scholar
  2. 2.
    T. E. Gilmer Jr., R. K. Franks and R. J. Bell, J. Phys. Chem. Sol. 26, 1195 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    R. L. Aggarwal, P. Fisher, V. Mourzine and A. K. Ramdas, Phys. Rev. 138, A882 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    K. Weiser, Phys. Rev. 126, 1427 (1962); H. Nara and A. Morita, J. Phys. Soc., Japan 23, 831 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    G. D. Watkins and F. S. Ham, Phys. Rev. Bl, 4071 (1970).ADSGoogle Scholar
  6. 6.
    H. Nara and H. Yamazaki, J. Phys. Soc. Japan 28, 1485 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    C. S. Fuller and K. B. Wolfstirn, J. Appl. Phys. 34, 1 (1963).CrossRefGoogle Scholar
  8. 8.
    W. Hayes, Phys. Rev. 138, A1227(1965). ADSCrossRefGoogle Scholar
  9. 9.
    D. F. Nelson, J. D. Cuthbert, P. J. Dean and D. G. Thomas, Phys. Rev. Lett. 17, 1262(1966). ADSCrossRefGoogle Scholar
  10. 10.
    J. R. Haynes, Phys. Rev. Lett.4, 361 (1961).ADSCrossRefGoogle Scholar
  11. 11.
    P. J. Dean, Phys. Rev. B4, 2596 (.1971).ADSGoogle Scholar
  12. 12.
    C. J. Frosch, Proc. Int. Conf. Cryst. Growth, Boston, 1966, Pergamon, New York (1967), p. 305.Google Scholar
  13. 13.
    H. Reiss and C. S. Fuller, J. Metals 8, 276 (1956).Google Scholar
  14. 14.
    P. J. Dean, R. A. Faulkner, S. Kimura and M. Ilegems, Phys. Rev.B4, 1926 (1971).ADSGoogle Scholar
  15. 15.
    P. J. Dean, Phys. Rev. 157, 655 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    T. N. Morgan, Phys. Rev. Lett. 21, 819 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    P. J. Dean, R. A. Faulkner and S. Kimura, Phys. Rev. B2,4062 (1970).ADSGoogle Scholar
  18. 18.
    D. G. Thomas, M. Gershenzon and J. J. Hopfield, Phys. Rev. 131. 2397 (1963).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yafet and D. G. Thomas, Phys. Rev. 131, 2405 (1963)ADSCrossRefGoogle Scholar
  20. 20.
    C. H. Henry, P. J. Dean, D. G. Thomas and J. J. Hopfield, Localized Excitations in Solids, ed. R. F. Wallis, Plenum, New York,(1968), p. 267.Google Scholar
  21. 21.
    D. G. Thomas and J. J. Hopfield, Phys. Rev. 128, 2135 (1962).ADSCrossRefGoogle Scholar
  22. 22.
    P. J. Dean and R. L. Hartman, Phys. Rev. B5, 4911 (1972).ADSGoogle Scholar
  23. 23.
    Note that the variation of no-phonon strength observed in exciton spectra associated with different P-site substitutional donors (Table l) is considerably larger than expected simply from the small differences in total binding energy. These differences, as well as the deviations observed in Fig. 4 may be due to variations In contributions of conduction band valleys other than X1 to the electron wave-functions, which can be significant for the deeper donors; T. G. Castner Jr., Phys. Rev. B2, 4911 (1970).ADSGoogle Scholar
  24. 24.
    D. G. Thomas, J. J. Hopfield and W M. Augustyniak, Phys. Rev. 140, A202 (1965).ADSCrossRefGoogle Scholar
  25. 25.
    P. J. Dean and D. G. Thomas, Phys. Rev. 150, 690 (1966).ADSCrossRefGoogle Scholar
  26. 26.
    Significantly above the S-C d-a NP line, T. N. Morgan, T. S. Plaskett and G. D. Pettit, Phys. Rev. 180, 845(1969).ADSCrossRefGoogle Scholar
  27. 27.
    A. Onton and R. C. Taylor, Phys. Rev. Bl, 2587 (1970).ADSGoogle Scholar
  28. 28.
    No absolutely compelling evidence exists for the assignment of the Si1,2bound exciton to the SiGa donor. For a recent discussion of this assignment, see A. T. Vink, A. J. Bosman, J. A. W. van der Does de Bye and R. C. Peters, J. Lum. 5., 57 (1972), but some puzzling problems remain.ADSCrossRefGoogle Scholar
  29. 29.
    Excitons bound to neutral donors in wurtzite CdS also showEBx accurately proportional to ED, with a large intercept, K. Nassau and C. H. Henry, Proc. 10th Int. Conf. Phys. Semicond., USAEC, Oak Ridge, Tenn. (1970), p. 629.Google Scholar
  30. 30.
    For donors see R. A. Faulkner, Phys. Rev. 184, 713(1969).Google Scholar
  31. 31.
    J. J. Hopfield, Proc. 7th Int. Conf. Phys. Semicond. Paris, Dunod, Paris (1964), p. 725.Google Scholar
  32. 32.
    J. C. Phillips, Phys. Rev. Bl, 1540 (1970); ibid. 1545 (1970).ADSGoogle Scholar
  33. 33.
    W. F. Brinkman, T. M. Rice, P.W. Aiderson and S. T. Chui, Phys. Rev. Lett. 28, 961 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    R. A. Faulkner, private communication, calculated using the empirical pseudopotential method of M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966). A similar result is obtained with recent experimental cyclotron resonance masses,mlh/mo =0.18 mhh/mQ = 0.6 <100>, R. A. Stradling, private communication.CrossRefGoogle Scholar
  35. 35.
    J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).ADSMATHCrossRefGoogle Scholar
  36. 36.
    Provisional cyclotron resonance estimates are mt/mo = 0.25 ± 0.04, ml/mo~ 0.7, R. A. Stradling, private communication.Google Scholar
  37. 37.
    J. C. Hensel, H. Hasegawa and M. Nakayama, Phys. Rev. 138, A225 (1965).ADSCrossRefGoogle Scholar
  38. 38.
    A. M. White, P. J. Dean, K. M. Fairhurst, W. Bardsley, E. W. Williams and B. Day, Solid State Comm. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • P. J. Dean
    • 1
  1. 1.Royal Radar EstablishmentMalvern, Worcs.England

Personalised recommendations