The Energy-Shift of Donor-Acceptor Emission on Varying the Excitation Intensity

  • E. Zacks
  • A. Halperin
Conference paper


An analytic expression for the dependence on the excitation intensity of the emission due to donor-acceptor pair recombination is given. Experimental values taken from literature were fitted by a non-linear-least-square method to the theoretical expression. Values for the limiting phonon energy for distant pairs (hV), and for the Bohr-radius (RB) of the impurity were then obtained. These parameters were calculated for GaP with C and S impurities, for ZnSe, for the blue emission of ZnS:Ag,Al and for self-activated ZnS:Cl. The method offered in the present work is most useful in cases where the line-structure of the D-A pairs is difficult to resolve. It should also be useful in cases in which the D-A line spectrum is resolved, when the determined parameters (hv and RB) may help in the classification of the line spectrum. An expression for the energy-shift of the emission with the time of the phosphorescence decay is given.


Peak Energy Excitation Intensity Line Spectrum Bohr Radius Phosphorescence Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. 133, A269 (1964)ADSCrossRefGoogle Scholar
  2. J. J. Hopfield, D. G. Thomas, and M. Gershenzon Phys. Rev. Letters 10, 162 (1963).ADSCrossRefGoogle Scholar
  3. 2.
    C. H. Henry, R. A. Faulkner and K. Nassau, Phys. Rev. 183,798 (1969).ADSCrossRefGoogle Scholar
  4. 3.
    K. Era, Sh. Shionoya, Y. Washizawa and H. Ohwatsu, J. Phys. Chem. Solids, 29,1843 (1968).ADSCrossRefGoogle Scholar
  5. 4.
    K. BMD x 85, Biomedical Computer Programs, x-Series Supplement, edited by W. J. Dixon (University of California Press, Berkeley, Calif. 1969).Google Scholar
  6. 5.
    E. Zacks and A. Halperin, Phys. Rev. B15. (1972), in print.Google Scholar
  7. 6.
    D. G. Thomas, J. J. Hopfield, and W. M. Augustiniak, Phys. Rev. 140, A202 (1965).ADSCrossRefGoogle Scholar
  8. 7.
    P. J. Dean and L, Patrick, Phys. Rev. B2, 4959 (1970).Google Scholar
  9. 8.
    M. Lax, Phys. Rev. 119, 1502 (1960).ADSCrossRefGoogle Scholar
  10. 9.
    K. Maeda, J. Phys. Chem. Solids 26, 595 (1965).ADSCrossRefGoogle Scholar
  11. 10.
    P. J. Dean and J. L. Merz, Phys. Rev. 178, 1310 (1969).ADSCrossRefGoogle Scholar
  12. 11.
    M. R. Lorenz, T. N. Morgan, G. D. Pettit, and W. Y. Turner, Phys. Rev. 168,902 (1968).ADSCrossRefGoogle Scholar
  13. 12.
    W. B. Brown and R. E. Roberts, J. Chem. Phys. 168, 2006 (1967).ADSCrossRefGoogle Scholar
  14. 13.
    K. Era, Sh. Shionoya and Y. Washizawa, J. Phys. Chem. Solids 29,1827 (1968).ADSCrossRefGoogle Scholar
  15. 14.
    N. Riehl, J. Luminescence 1,2 1-16 (1970).ADSCrossRefGoogle Scholar
  16. 15.
    P. J. Dean and D. G. Thomas, Phys. Rev. 150, 690 (1966).ADSCrossRefGoogle Scholar
  17. 16.
    J. Nahir, M. Sc. Thesis, The Hebrew University of Jerusalem (1967).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. Zacks
    • 1
  • A. Halperin
    • 1
  1. 1.The Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations