Luminescence and Photoconductivity of Nitronaphthalenes

  • Frank Vogel
  • Nicholas E. Geacintov

Abstract

This work reports the first observation of phosphorescence from polycrystalline nitronaphthalenes. The phosphorescence spectrum, is red-shifted from its molecular counterpart; its relative intensity decreases as the temperature is increased from 77°K, exhibiting a relatively weak activation energy. The emission is attributed to triplet (π*← π) states whose lifetimes at room temperature are 35μ sec and 0.4μ sec for 1,5-dinitro-naphthalene and 1,8-dinitronaphthalene respectively. At room temperature in 1,5-dinitronaphthalene single crystal platelets, the photoconductivity observed is extrinsically generated, holes being more efficiently trapped than electrons, and is tentatively attributed to mobile excitons which migrate to the electrode and dissociate there producing holes and electrons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Craig in Physics and Chemistry of the Organic Solid State, eds. D. Fox, M. M. Labes, and A. Weissberger, Interscience Publishers, John Wiley and Sons, New York 1963, p. 585Google Scholar
  2. 2.
    D. P. Craig and S. H. Walmsley, Excitons in Molecular Crystals, W. A. Benjamin, Inc., New York 1968.Google Scholar
  3. 3.
    R. Rusakowicz and A. C. Treata, Spectrochim. Acta 27A, 787 (1971)ADSGoogle Scholar
  4. 4.
    S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Inc., Englewood Cliffs 1969Google Scholar
  5. 5.
    D. S. McClure, J. Chem. Phys. 17, 905 (1949)ADSCrossRefGoogle Scholar
  6. 6.
    I. W. May, private communicationGoogle Scholar
  7. 7.
    I. W. May and J. P. Kelso, Ballistic Research Laboratories Memorandum Report No. 2070 (1970)Google Scholar
  8. 8.
    P. Avakian and R. E. Merrifield, Mol. Cryst. and Liq. Cryst. 5, 37 (1968)CrossRefGoogle Scholar
  9. 9.
    N. Geacintov, M. Pope, and H. Kallmann, J. Chem. Phys. 45, 2639 (1966)ADSCrossRefGoogle Scholar
  10. 10.
    N. Geacintov and M. Pope, J. Chem. Phys. 47, 1194 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    N. Geacintov and M. Pope, J. Chem. Phys. 45 3884 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    N. Geacintov and M. Pope, J. Chem. Phys. 50, 814 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    B. J. Mulder, Philips Research Report, Supplement 4 (1968)Google Scholar
  14. 14.
    M. Kojima, J. Tanaka, and S. Nagakura, Theoret. chim. Acta (Berl.) 3, 432 (1965)CrossRefGoogle Scholar
  15. 15.
    F. Vogel, thesis, New York University (1971)Google Scholar
  16. 16.
    G. Castro and J. F. Hornig, J. Chem. Phys. 42 1459 (1965)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Frank Vogel
    • 1
    • 2
  • Nicholas E. Geacintov
    • 1
  1. 1.Department of Chemistry and Radiation and Solid State LaboratoryNew York UniversityNew YorkUSA
  2. 2.Feltman Research LaboratoriesDoverUSA

Personalised recommendations