Luminescence of ZnTe and Its Modulation by Infrared Radiation

  • A. Maruani
  • J. P. Noblanc
  • G. Duraffourg
Conference paper


Measurements of reflectivity, photoluminescence and cathodoluminescence for various electron beam voltages were performed on p-type single crystals at liquid nitrogen, hydrogen and helium temperatures. By an application of the microreversibility principle and consideration of the reflectivity data, the nature and the energies of the transitions were determined. In addition, we identify the lines due to the annihilation of exciton-neutral defect complexes, in ground or excited state. When the luminescence is modulated by a CO2 laser (hνIR ~ 130 meV) effects are observed at liquid helium temperature. A quenching effect is observed for the free-to-bound and pair recombinations. Quenching of the luminescence due to the annihilation of exciton isoelectronic oxygen complexes is a direct corroboration of the binding-in-two-step theory.


Free Exciton Helium Temperature Liquid Helium Temperature Edge Emission Beam Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Halsted, M. Aven, H. Coghill, J. Elee. Soc. 112, 177 (1965).CrossRefGoogle Scholar
  2. 2.
    R. Nahory, H. Fan, Phys. Rev. 156, 825 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    A. Aten, C. Van Doorn, A. Vink, Proc. Intern. Conf. on the Physics of Semiconductors, Exeter, July 1962, p. 696.Google Scholar
  4. 4.
    k. B. Segall, D. Marple, Physics and Chemistry of II-VI Compounds, edited by Aven and Prener, North Holland (1967), p. 335.Google Scholar
  5. 5.
    R. Halsted, M. Aven, Bull. Am. Phys. Soc. (1961) 312.Google Scholar
  6. 6.
    E. Gross, L. Suslina, A. Lifshitz, Sov. Phys. Sol. State 5 582 (1963).Google Scholar
  7. 7.
    D. Thomas, Dingle, J. Cuthbert, II-VI Semiconducting Compounds, edited by D. G. Thomas, Benjamin, New York (1967), p. 863.Google Scholar
  8. 8.
    R. Dietz, D. Thomas, J. Hopfield, Phys. Rev. Letters 8 391 (1962).ADSCrossRefGoogle Scholar
  9. 9.
    W. Merz, Intern. Conf. on Physics of Semiconductors, Cambridge, Mass. edited by S. P. Keller, J. C. Hensel, F. Stern, USAEC (1970), p. 251.Google Scholar
  10. 10.
    A. Maruani, These de 3° Cycle, Paris VI, 1972.Google Scholar
  11. 11.
    J. Noblanc, J. Loudette, G. Duraffourg, Phys. Stat. Sol. 32 281 (1969).ADSCrossRefGoogle Scholar
  12. R. Halsted, M. Aven, Phys. Rev. Letters 14 64 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    M. Aven, J. Appi. Phys. 38, 444 (1967).Google Scholar
  14. 14.
    G. Neu, Y. Marfaing, C. R. Acad. Sci. Paris B 273 1112 (1971).Google Scholar
  15. 15.
    I. Noblanc, J. Loudette, G. Duraffourg, J. of Luminescence 1,2, 528 (1970).Google Scholar
  16. 16.
    D. Marple, M. Aven, Physics and Chemistry of II-VI Compounds, edited hy D. G. Thomas, Benjamin (1967) p. 315.Google Scholar
  17. 17.
    D. Thomas, J. Hopfield, Phys. Rev. 128, 2135 (1962).ADSCrossRefGoogle Scholar
  18. 18.
    S. Elkomoss, Phys. Rev. B4 3411 (1971).ADSGoogle Scholar
  19. 19.
    J. Hopfield, D. Thomas, R. Lynch, Phys. Rev. Letters 17, 312 (1966).ADSCrossRefGoogle Scholar
  20. 20.
    J. Cuthbert, J. Appl. Phys. 739 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • A. Maruani
    • 1
  • J. P. Noblanc
    • 1
  • G. Duraffourg
    • 1
  1. 1.Centre National d’Etudes des TélécommunicationsBagneuxFrance

Personalised recommendations