Donor-Double Acceptor Luminescence of Zinc Telluride

  • F. J. Bryant
  • A. T. J. Baker


Using a pulsed electron beam from a Van de Graaff accelerator, time resolved spectroscopy measurements at ~ 10K have been performed on the four broad band emissions occurring in zinc telluride at 531.4, 533.4, 551.9 and 553.9 nm and designated AI, AII, BI and BII respectively. These measurements have confirmed the assignment of the AI and BI emissions to free-to-bound transitions and the AII and BII emissions to bound-to-bound transitions. The data also permit an estimate of the donor depth as ~ 31 meV. Heat treatment studies and doping with various impurities have shown that enhancement of the bound-to-bound emissions is produced by phosphorus doping. The two acceptor levels are believed to result from the first and second ionized states of the zinc vacancy.


Excitation Intensity Pulse Electron Beam Acceptor Centre Zinc Vacancy Zinc Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. At en, C. Z. van Doom and A. T. Vink, Proc. Int. Conf. Semiconductors Exeter (i.P.P.S. London) (1962) p. 696.Google Scholar
  2. 2.
    A. G. Fischer, J. N. Carides and J. Dresner, Solid State Comm. 2, 157 (1961).CrossRefGoogle Scholar
  3. 3.
    R. S. Title, F. Morehead and G. Mandel, Phys. Rev. 136, 300 (1961+).ADSCrossRefGoogle Scholar
  4. 4.
    B. L. Crowder and G. D. Pettit, Phys. Rev. 108, 1235 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    T. C. Larsen, C. F. Varotto and D. A. Stevenson, J. Appl. Phys. 43, 172 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    F. J. Bryant and A. T. J. Baker, Phys. Lett. 35A, 457 (1971).ADSGoogle Scholar
  7. 7.
    F. J. Bryant and A. T. J. Baker, J. Phys. C. 5, 2283 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    M. Aven and B. Segall, Phys. Rev. 130, 81 (1963).ADSCrossRefGoogle Scholar
  9. D. G. Thomas and E. A. Sadowski, J. Phys. Chem. Solids 25, 395 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    F. J. Bryant and A. T. J. Baker, Phys. Stat. Solidi (a) 11, 623 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    F. J. Bryant and C. J. Radford, Cryogenics 10, 329 (1963).CrossRefGoogle Scholar
  12. 12.
    D. G. Thomas, J. J. Hopfield and W. M. Augustyniak, Phys. Rev. 140, 202 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    K. Colhow, Phys. Rev. 141, 742 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    A. T. J. Baker, F. J. Bryant and W. E. Hagston, to he published.Google Scholar
  15. 15.
    R. E. Nahory and H. Y. Fan, Phys. Rev. 156, 825 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    J. M. Meese, Appl. Phys. Lett. 19, 86 (1971)•ADSCrossRefGoogle Scholar
  17. 17.
    W. R. Woody, R. A. House and J. M. Meese, Bull. Amer. Phys. Soc. II. 17, 859 (1971).Google Scholar
  18. 18.
    N. Watanahe and S. Usui, Jap. J. Appl. Phys. 6, 1253 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • F. J. Bryant
    • 1
  • A. T. J. Baker
    • 1
  1. 1.Department of PhysicsUniversity of HullUK

Personalised recommendations