Fibre Optics pp 148-176 | Cite as

Coherent Bundles — Applications

  • W. B. Allan
Part of the Optical Physics and Engineering book series (OPEG)


The manufacture of coherent bundles is a much more difficult process than that of non-coherent bundles and therefore the range of components which can be made is much smaller than with non-coherent bundles. In fact, at the present time, the vast majority of applications involve the use of image-transferring bundles, which can be used either for direct viewing by the eye, or the transferred image can be processed electronically or photographically. For the sake of convenience, these two categories of use will be considered in two separate sections and a third section will deal with applications which do not use the conventional design of bundle.


Fibre Optic Objective Lens Light Guide Fibre Size Coherent Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S. Kapany and R. E. Hopkins, J. Opt. Soc. Am. 47, 1109 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    L. S. Allard, Ind. Electronics 2, 273 (1964)Google Scholar
  3. 3.
    N. S., Proc. 2nd. Image Intensifier Symposium, Fort Belvoir, Va. (1961) p. 143.Google Scholar
  4. 4.
    P. J. Dolon and W. F. Niklas Proc. 2nd Image Intensifier Symposium, FortBelvoir, Va. (1961), p. 93.Google Scholar
  5. 5.
    D. F. Capellaro, Spivn Light and Heat Sensing: AGARDograph 71 (H.J. Merrill, Ed.), Perga-mon Press, Oxford (1963), p. 311Google Scholar
  6. 6.
    N. S. Kapany, Sci. Am. 203, (No. 5), 72 (1960)ADSCrossRefGoogle Scholar
  7. 7.
    C. J. Koester, J. Opt. Soc. Am. 58, 63 (1968)ADSCrossRefGoogle Scholar

Chapter Eight — Coherent Bundles — Applications

  1. 81.
    Bender, H., Image Splitting Methods in High Frequency Photography, In: Kurz-zeitphysik, (K. Vollrath et al., Eds.) Vienna, Springer-Verlag, 1967, p. 301–27.Google Scholar
  2. 82.
    Brouwer, W., and A. C. S. van Heel, Two-dimensional Coding of Optical Images, Optica Acta, 2, 49–50 (1955).ADSCrossRefGoogle Scholar
  3. 83.
    Burroughs, E. G., and A. J. Kennedy, Electron Microscope Camera with Fiber Optic Output, Rev. Sci. Instrum. 37, 771–2, (1966).ADSCrossRefGoogle Scholar
  4. 84.
    Capellaro, D. F., Fiber Optics in Data Display and Analysis, In: S.P.I.E. Photo-Optical Data Reduction Seminar, Proc. St. Louis, 1964, p. VII-1–10.Google Scholar
  5. 84a.
    Courteney-Pratt, J. S., A Fiber Optics Camera, In: Intern. Congr. High SpeedPhot. Proc, 6th, The Hague, Netherlands, 1962. 1963, p. 30–40.Google Scholar
  6. 85.
    Courteney-Pratt, J. S., J. W. McLaughlin, E. C. Schramm, and H. Alberti, AFiber Optics Camera for Recording Sequences ofX-Ray Pictures, J. Soc. Motion Picture and Television Engrs., 71, 585–90 (1962).Google Scholar
  7. 86.
    Day, R., and D. M. Krauss, Fiber Optics Yields a New Scanner Concept, Control Engng, 8, 101–4 (Dec, 1961).Google Scholar
  8. 87.
    Doyle, R. J., A Scan-Conversion Tube Utilizing Fiber-Optics Photon Transfer, IEEE Trans. Electron Devices, ED-10, 410–6 (1963).CrossRefGoogle Scholar
  9. 88.
    Gurevich, S. B., and V. A. Rabinovich, Optical Coding in the Reproduction of the Image in Television on Photography, Tekh; Kino i Televid. 10, 38–44 (July 1966).Google Scholar
  10. 89.
    Holiday, C. T., Optical System for Line-Scan Television Satellite, In: S.P.I.E. Airborne Photo-Optical Instrumentation Seminar, Proc. Cocoa Beach, Fla., 1967, p. VII-1–8.Google Scholar
  11. 90.
    Hren, J. J., and R. W. Newman, Fiber Optics in Field Ion Microscopy, Rev. Sci. Instrum. 38, 869–70(1967).ADSCrossRefGoogle Scholar
  12. 91.
    Kapany, N. S., Fiber Optics. VIII. The Focon, J. Opt. Soc. Am. 51, 32–4 (1961).MathSciNetADSCrossRefGoogle Scholar
  13. 92.
    Kapany, N. S., Fiber Optics Coupling for Multistage Image Intensifiers, In: Image Intensifier Symposium, Proc, 2nd, Fort Belvoir, Va., 1961, p. 143–57.Google Scholar
  14. 93.
    Kilcoyne, M. K., Electronography and Image Intensification — A Comparison, In: Nat’l Aerospace Electronics Conf. Proc. 19th Dayton, Ohio, 1967, p. 259–60.Google Scholar
  15. 94.
    Korda, E. J., L. H. Pruden, and J. P. Williams, Scanning Electron Microscopy of P-16 Phosphor-Cathodoluminescent and Secondary Electron Emission Modes, Appl. Physics Letters 10, 205–6 (1967).Google Scholar
  16. 95.
    Mueller, A. A., Considerations for Fiber Optic Application to Cathode Ray Tubes, S.P.I.E. Journal 6, 44–8 (1967–68).Google Scholar
  17. 96.
    Potter R. J., and R. E. Hopkins, Fiber Optics and Its Application to Image Intensifier Systems, In: Image Intensifier Symposium, Proc, 1st, Fort Belvoir, Va., 1958, p. 91–109.Google Scholar
  18. 97.
    Potter R. J., and R. E. Hopkins, The Optical Coupling of a Scintillation Chamber to an Image-Intensifying Tube, IRE Trans. Nuclear Sci., N.S.-7, 150–8 (1960).Google Scholar
  19. 98.
    Stojanoff, C. G., A Transient FiberOptics Probe for Space Resolved Diagnostics of Dense Plasmas, AIAA Journal 4, 1766–72 (1966).ADSCrossRefGoogle Scholar
  20. 99.
    Uffen, R. W. J., Pictures through Fibers, Perspective 4, 5–14 (1962).Google Scholar
  21. 100.
    van Heel, A. C. S., Optical Representation of Images Without Use of Lenses or Mirrors, Ingenieur 65, 0.25–0.27 (1953).Google Scholar
  22. 101.
    Woodley, W. A., and D. Rogers, High Resolution and Fibre Optic Cathode Ray Tubes, Brit. Common, and Electronics 10, 696–701 (1963).Google Scholar

Copyright information

© Plenum Publishing Company Ltd 1973

Authors and Affiliations

  • W. B. Allan
    • 1
  1. 1.Ministry of DefenceSevenoaks, KentUK

Personalised recommendations