Vision pp 165-184 | Cite as

Solid-State Photomultipliers

  • Albert Rose
Part of the Optical Physics and Engineering book series (OPEG)


The vacuum photomultiplier has had a dramatic impact on the field of sensors owing to its ability to detect single photons. The vacuum photomultiplier, however, is a single-picture-element device. The same principle of multiplication has been extended to large-area image sensors by the several forms of image multipliers discussed in Chapter 6. These image multipliers are beginning to service a wide range of applications where the supply of photons is limited.


Impact Ionization Energetic Electron High Electric Field Dielectric Breakdown Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A-l.
    L. K. Anderson, P. G. McMullin, L. A. D’Asaro, and A. Goetzberger, Microwave photodiodes exhibiting microplasma—free carrier multiplication, Appl. Phys. Letters 6, 62–63 (1965).CrossRefGoogle Scholar
  2. F-l.
    A. G. Fischer, Electroluminescent lines in ZnS powder particles. II. Models and comparison with experience, J. Electrochem. Soc. 110, 733–748 (1963).CrossRefGoogle Scholar
  3. F-2.
    H. Fröhlich, Dielectric breakdown in solids, Rep. Prog. Phys. 6, 411–430 (1939).CrossRefGoogle Scholar
  4. F-3.
    H. Fröhlich, On the theory of dielectric breakdown in solids, Proc. Roy. Soc. (London) A188, 521 (1947).Google Scholar
  5. H-1.
    A. von Hippel, Electrical breakdown of solid and liquid insulators, J. Appl. Phys. 8, 815–832 (1937).CrossRefGoogle Scholar
  6. K- 1.
    H. Kiess, High field behaviour of ZnO. H. Investigation of the photocurrents, J. Phys. Chem. Solids 31, 2391–2395 (1969).CrossRefGoogle Scholar
  7. L-1.
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, and W. Wiegman, Ionization rates of holes and electrons in silicon, Phys. Rev. 134, A761–A773 (1964).CrossRefGoogle Scholar
  8. M-1.
    R. J. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron Devices ED-13, 164–168 (1966).Google Scholar
  9. M-2.
    A. Many, High field effects in photoconducting cadmium sulphide, J. Phys. Chem. Solids 26, 575–585 (1965).CrossRefGoogle Scholar
  10. N-1.
    D. O. North, private communication.Google Scholar
  11. O-1.
    M. R. Oliver, A. L. McWorter, and A. G. Foyt, Current runaway and avalanche effects in n-CdTe, Appl. Phys. Letters 11, I11 (1967).CrossRefGoogle Scholar
  12. R-1.
    A. Rose, The acoustoelectric effects and the energy losses by hot electrons, RCA Review 27, 98–139 (1966); 27, 600–631(1966); 28, 634–652 (1967); 30, 435–474 (1969); 32, 463–488 (1971).Google Scholar
  13. S-1.
    E. D. Savoye and D. E. Anderson, Injection and emission of hot electrons in thin-film tunnel emitters, J. Appl. Physics 38, 3245–3265 (1967).CrossRefGoogle Scholar
  14. V-1.
    A. Vecht, N. J. Werring, R. Ellis, and P. J. F. Smith, Materials control and d.c. electroluminescence in ZnS: Mn, Cu, Cl powder phosphors, Brit. J. Appl. Phys. 2, 953–966 (1969).Google Scholar
  15. W-l.
    P. P. Webb and R. J. McIntyre, Single photon detection with avalanche photodiodes, paper presented at C.A.P. Annual Meeting, June 1970 Winnipeg, Canada.Google Scholar
  16. W-2.
    H.G. White and R.A. Logan, GaP surface barrier diodes, J. Appl. Phys. 34, 1990–1997 (1963).CrossRefGoogle Scholar
  17. W-3.
    S. Whitehead, Dielectric Breakdown of Solids (1953), Clarendon Press, Oxford.Google Scholar
  18. W-4.
    R. Williams, Dielectric breakdown in cadmium sulphide, Phys. Rev. 125, 850–854 (1962).CrossRefGoogle Scholar
  19. W-5.
    R. Williams, High electric fields in sodium chloride, J. Phys. Chem. Solids 25, 853–858 (1964).CrossRefGoogle Scholar


  1. E. M. Conwell, High field transport in semiconductors, Solid State Phys. Suppl. (1967), Academic Press, New York.Google Scholar
  2. A. Rose, The Acoustoelectric effects and the energy losses by hot electrons, RCA Rev. 27, 98–139 (1966); 27, 600–631 (1966); 28, 634–652 (1967); 30, 435–474 (1969); 32, 463–488 (1971).Google Scholar
  3. R. Williams, High electric fields in II—VI compounds, Appl. Opt. Suppl., 3, Electrophotography, 15–19 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Albert Rose
    • 1
  1. 1.David Sarnoff Research CenterRCAPrincetonUSA

Personalised recommendations