Unified Thermodynamics of Dissipative Structures and Coherence in Nonlinear Optics

  • R. Graham

Abstract

Threshold phenomena in lasers and nonlinear optics have been studied extensively by theoreticians within the last decade, mainly by means of microscopic, quantum mechanical approaches[1,2]. However, in recent times, the macroscopic nature of many of the important results like probability densities and linewidths was made apparent by showing their pronounced analogy to results of the macroscopic Landau theory of phase transitions[3]. Therefore, it became interesting to look at these threshold phenomena also from a macroscopic point of view.

Keywords

Entropy Total Heat Coherence Librium Mandel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e. g., H. Haken, Encyclopedia of Physics, 3 Vol. 25/2c, (Springer, New York 1970); H. Risken, Progress In Optics, Vol. 8, ed. E. Wolf (North Holland, Amsterdam, 1970); M. Lax, Statistical Physics, Phase Transitions and Superfluidity 3 ed. H. Chretian etal., (Gordon and Breach, New York 1968); M. Scully and W. E. Lamb, Jr., Phys. Rev. 159, 208 (1967); 166, 246 (1968).Google Scholar
  2. 2.
    R. Graham, Z. Physik 210, 319 (1968); 211, 469 (1968); R. Graham and H. Haken, Z. Physik 210,.276 (1968); R. Graham, Phys. Lett. 32A, 373 (1970); D. R. White and W. H. Louisell, Phys. Rev. A 1, 1347 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    R. Graham and H. Haken, Z. Physik 213, 420 (1968); 237, 31 (1970); V. DeGiorgio and M. O. Scully, Phys. Rev. A 1170 (1970); R. Graham, Proceedings of the International Symposium on Synergetics, ed. H. Haken, ( Teubner, Stuttgart, 1972 ).Google Scholar
  4. 4.
    R. Graham and H. Haken, Z. Physik 243, 289 (1971).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R. Graham and H. Haken, Z. Physik 245, 141 (1971).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    R. Graham, Springer Tracts in Modern Physics, to be published ( Springer, New York 1972 ).Google Scholar
  7. 7.
    P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, ( Wiley Interscience, New York, 1971 ).MATHGoogle Scholar
  8. 8.
    I. Prigogine and G. Nicolis, J. Chem. Phys. 46, 3542 (1967); I Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968); R. Lefever, J. Chem. Phys. 49, 4977 (1968).CrossRefGoogle Scholar
  9. 9.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability3 ( Clarendon Press, Oxford 1961 ).Google Scholar
  10. 10.
    P. Glansdorff and L Prigogine, Physica 30, 351 (1964).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    P. Glansdorff and I. Prigogine, Physica 46, 344 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    I. Prigogine and P. Glansdorff, Physica 31, 1242 (1965).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    V. M. Zaitsev and M. I. Shliomis, Sov. Phys. JETP 32, 866 (1971).ADSGoogle Scholar
  14. 14.
    M. Lax, Rev. Mod. Phys. 32, 25 (1960).ADSMATHCrossRefGoogle Scholar
  15. 15.
    J. L. Lebowitz and P. G. Bergmann, Annals of Physics 1, 1 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    N. Bloembergen, Nonlinear Optics, (Benjamin, New York 1965); P. S. Pershan, Phys. Rev. 130, 919 (1963).MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • R. Graham
    • 1
    • 2
  1. 1.New York UniversityNew YorkUSA
  2. 2.Universität StuttgartStuttgartGermany

Personalised recommendations