Advertisement

Survey of the Present Status of Neoclassical Radiation Theory

  • E. T. Jaynes

Abstract

Present quantum electrodynamics (QED) contains many very important “elements of truth”, but also some clear “elements of nonsense”. Because of the divergences and ambiguities, there is general agreement that a rather deep modification of the theory is needed, but in some forty years of theoretical work, nobody has seen how to disentangle the truth from the nonsense. In such a situation, one needs more experimental evidence, but during that same forty years we have found no clues from the laboratory as to what specific features of QED might be modified. Even worse, in the absence of any alternative theory whose predictions differ from those of QED in known ways, we have no criterion telling us which experiments would be the relevant ones to try.

Keywords

Dipole Moment Spontaneous Emission Lamb Shift Total Moment Neoclassical Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.T. Jaynes, Stanford Microwave Laboratory Report #502 (May 1958).Google Scholar
  2. 2.
    E.T. Jaynes in Quantum Electronics, ed. C.H. Townes, ( Columbia University Press, New York, 1960 ) p. 287.Google Scholar
  3. 3.
    E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  4. 4.
    J.H. Eberly, Ph.D. Thesis, Stanford University (1962).Google Scholar
  5. 5.
    M.J. Duggan, Ph.D. Thesis, Stanford University (1963).Google Scholar
  6. 6.
    M.D. Crisp and E.T. Jaynes, Phys. Rev. 179, 1253 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Stroud and E.T. Jaynes, Phys. Rev. A 1, 106 (1970).ADSCrossRefGoogle Scholar
  8. Note that, in the transition from galley proof to page layout, pages 118 and 119 became scrambled. To make sense, the text should be read in the following sequence:Google Scholar
  9. 8.
    D. Leiter, Phys. Rev. A 2, 259 (1970).ADSCrossRefGoogle Scholar
  10. 9.
    E.T. Jaynes, Phys. Rev. A 2, 260 (1970).ADSCrossRefGoogle Scholar
  11. 10.
    W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, Handb. d. Phys. 2. Aufl. Band 24, 1. Teil (1932), p. 204. Reprinted by Edwards Brothers Inc., Ann Arbor, Mich. (1946).Google Scholar
  12. 11.
    L.I. Schiff, Quantum Mechanics ( McGraw-Hill Book Co., Inc., New York, 1949 ) p. 255.Google Scholar
  13. 12.
    F. Bloch, Phys. Rev. 70, 460 (1946); see also Rabi, Ramsey and Schwinger, Revs. Mod. Phys. 26, 167 (1954). For a discussion of radiation damping in these experiments, see Bruce, Norberg, and Pake, Phys. Rev. 104, 419 (1956); S. Bloom, J. Appl. Phys. 28, 800 (1957).MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957), particularly Sec. 18.MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    E.L. Hahn, Phys. Rev. 80, 580 (1950).ADSMATHCrossRefGoogle Scholar
  16. 15.
    E.T. Jaynes and A.L. Bloom, Phys. Rev. 98, 1099, 1104 (1955).ADSGoogle Scholar
  17. 16.
    N.G. Basov and A.M. Prokhorov, J. Exp. Theor. Phys. USSR, 27, 431 (1954); 28, 249 (1955).Google Scholar
  18. 17.
    K. Shimoda, T.C. Wang, and C.H. Townes, Phys. Rev. 102, 1308 (1956).ADSCrossRefGoogle Scholar
  19. 18.
    W.E. Lamb and J.C. Helmer, Stanford Microwave Laboratory Report #311 (1956); J. Appl. Phys. 28, 212 (1957).ADSCrossRefGoogle Scholar
  20. 19.
    R.P. Feynman, F.L. Vernon, and R.W. Hellwarth, J. Appl. Phys. 28, 49 (1957). Their radiation damping results, with the inevitable hyperbolic secant, had been found also by S. Bloom, J. Appl. Phys. 27, 785 (1956).ADSCrossRefGoogle Scholar
  21. 20.
    W.E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).ADSCrossRefGoogle Scholar
  22. 21.
    A. Szöke and A. Javan, Phys. Rev. Letters 10, 521 (1963); R.L. Fork and M.A. Pollack, Phys. Rev. 139, A1408 (1965);ADSCrossRefGoogle Scholar
  23. B. Pariser and T.C. Marshall, Appl. Phys. Letters 6, 232 (1965).ADSCrossRefGoogle Scholar
  24. 22.
    M.O. Scully and W.E. Lamb, Jr., Phys. Rev. 159, 208 (1967).ADSCrossRefGoogle Scholar
  25. 23.
    A. Einstein, Phys. Zeit. 10, 185, 323, 817 (1909).Google Scholar
  26. 24.
    M.O. Scully and M. Sargent III, “Physics Today” (March 1972) p. 38. See also the extensive discussion in S. Tomonaga, Quantum Mechanics (North-Holland Publ. Co., Amsterdam, 1962) Ch. 2.Google Scholar
  27. 25.
    S.L. McCall and E.L. Hahn, Phys. Rev. Letters 18, 908 (1967), Phys. Rev. 183, 457 (1968).ADSCrossRefGoogle Scholar
  28. 26.
    J.F. Clauser, “Experimental Limitations to the Validity of Semi-classical Radiation Theories”, this volume, p. Ill; see also Phys. Rev. Letters 23, 880 (1969); 28, 938 (1972).ADSCrossRefGoogle Scholar
  29. 27.
    T.L. Paoli, Phys. Rev. 163, 1348 (1967).ADSCrossRefGoogle Scholar
  30. 28.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, N.J., 1955). For newer developments, see J.S. Bell, Rev. Mod. Phys. 38, 447 (1966); E.P. Wigner, Am. J. Phys. 38, 1005 (1970); L.E. Ballentine, Rev. Mod. Phys. 42, 358 (1970).MATHGoogle Scholar
  31. 29.
    W. Heisenberg, in Neils Bohr and the Development of Physics, ed. W. Pauli ( Pergamon Press, New York, 1955 ) p. 24.Google Scholar
  32. 30.
    W. Heisenberg, Physics and Philosophy (Harper and Bros. Publishers, New York, 1958). The above quotations are found on pp. 129, 145, 164.Google Scholar
  33. 31.
    D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  34. 32.
    I.R. Senitzky, Phys. Rev. Letters 20, 1062, 1277 (1968).ADSCrossRefGoogle Scholar
  35. 33.
    F.R. Nash and J.P. Gordon, “The Implications of Radiative Equilibrium in Jaynes’ Extension of Semiclassical Radiation Theory”, presented at this Conference, p. 623.Google Scholar
  36. 34.
    R.W. Wood, Physical Optics ( Macmillan Co., New York, 1934 ).Google Scholar
  37. 35.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge University Press, 1934); reprinted in 1961; p. 13. Similar remarks are found on pp. 32, 80, 108.MATHGoogle Scholar
  38. 36.
    H.M. Gibbs, “A Test of Jaynes’ Neoclassical Theory: Incoherent Resonance Fluorescence from a Coherently Excited State”, presented at this Conference, p. 83.Google Scholar
  39. 37.
    J.R. Ackerhalt, J.H. Eberly, and P.L. Knight, “A Quantum Electrodynamic Investigation of the Jaynes-Crisp-Stroud Approach to Spontaneous Emission”, presented at this Conference, p. 635.Google Scholar
  40. 38.
    M.C. Newstein, Phys. Rev. 167, 89 (1968); C.R. Stroud,.Phys. Rev. A 3, 1044 (1971).ADSCrossRefGoogle Scholar
  41. 39.
    E.T. Jaynes, Statistical Physics, Vol. 3, ed. K.W. Ford (W.A. Benjamin Inc., New York, 1963) Ch. 4; see particularly Eq.(21).Google Scholar
  42. 40.
    M. von Laue, Ann. d. Phys. 47, 853; 48, 668 (1915).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. T. Jaynes
    • 1
  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations