Advertisement

Detuned Single Mode Laser and Detailed Balance

  • H. Risken
Conference paper

Abstract

The statistical properties of laser light have been investigated both theoretically (e.g. [1–20]) and experimentally (e.g. [21–30]) in great detail. For a single mode laser not too far from threshold the theory is rather simple (it is essentially governed by only one parameter) and it agrees with experiments very well. In the experiments [21–30] only the statistical properties of the intensity are compared with the theory. Measurements giving information on the statistical properties of the phase of the light field, for instance the usual linewidth, have been made in the threshold region only quite recently [31], see fig. 1.

Keywords

Detailed Balance Threshold Region Single Mode Laser Geneous Gaussian Distribution Drift Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Haken, Z. Physik 181, 96 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    H. Risken, Z. Physik 186, 85 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    H. Sauermann, Z. Physik 188, 480 (1965), 189, 312 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    M. Lax and R.D. Hempstead, Bull. Am. Phys. Soc. 11, 111 (1966).Google Scholar
  5. 5.
    H. Risken, C. Schmid and W. Weidlich, Z. Physik 193, 37 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    V. Arzt, H. Haken, H. Risken, H. Sauermann, C. Schmid and W. Weidlich, Z. Physik 197, 207 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Fleck, Phys. Rev. 149, 309 (1966), 149, 322 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    M. Lax (QV) in: Physics of Quantum Electronics, eds. P.L. Kelley, B. Lax and P.E. Tannenwald ( McGraw-Hill Book Co., Inc., New York 1966 ) p. 735.Google Scholar
  9. 9.
    M. Scully, and W.E. Lamb, Phys. Rev. Letters 16, 853 (1966), Phys. Rev. 159, 208 (1967).ADSCrossRefGoogle Scholar
  10. 10.
    H. Risken, Z. Physik 191, 302 (1966).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    H. Risken and H.D. Vollmer, Z. Physik 201, 322 (1967), 204, 240 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    R.D. Hempstead, and M. Lax, Phys. Rev. 161, 350 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    M. Lax, and W.H. Louisell, (QIX) IEEE J. Quantum Electron. QE-3, 47 (1967).Google Scholar
  14. 14.
    H. Risken, Fortschr. Physik 16, 261 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    M. Lax, in Statistical Physics Vol 2, Brandeis University Summer Institute in Theoretical Physics, page 269, ( Gordon and Breach, New York-London-Paris, 1968 ).Google Scholar
  16. 16.
    H. Haken, Laser Theory, in Encyclopedia of Physics Vol. XXV/2c, eds. S. Flugge ( Springer Verlag, Berlin-Heidelberg-New York, 1970 )Google Scholar
  17. 17.
    H. Risken, in Progress in Optics, Vol. VIII, ed. E. Wolf (North Holland, Amsterdam, 1970 ) p. 239.Google Scholar
  18. 18.
    J.P. Gordon, and E.W. Aslaken, IEEE J. Quantum Electron.QE-6 428 (1970).Google Scholar
  19. 19.
    M. Lax, and M. Zwanziger, Phys. Rev. Let. 24, 937 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    S. Grossmann, and P.H. Richter, Z. Physik 242, 458 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Smith, and J.A. Armstrong, Phys. Rev. Letters 16, 1169 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Armstrong, and A.W. Smith, in Progress in Optics, Vol. 6, ed. E. Wolf (North Holland Publishing Co., Amsterdam; John Wiley and Sons, New York 1967 ), p. 211.Google Scholar
  23. 23.
    F.T. Arecchi, G.S. Rodari, and A. Sona, Phys. Letters 25A, 59 (1967).ADSCrossRefGoogle Scholar
  24. 24.
    R.F. Chang, R.W. Detenbeck, V. Korenmann, C.O. Alley, and U. Hochuli, Phys. Letters 25A, 272 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    F.T. Arecchi, M. Giglio and A. Sona, Phys. Letters 25A, 341 (1967).Google Scholar
  26. 26.
    F. Davidson, and L. Mandel, Phys. Letters 25A, 700 (1967).ADSCrossRefGoogle Scholar
  27. 27.
    E.R. Pike, in: Quantum Optics, eds. S.M. Kay and A. Maitland, ( Academic Press, London-New York 1970 ), p. 127.Google Scholar
  28. 28.
    D. Meitzer, W. Davis and L. Mandel, Appl. Phys.Letters 17, 242 (1970).ADSCrossRefGoogle Scholar
  29. 29.
    D. Meitzer, and L. Mandel, Phys. Rev. Letters 25, 1151 (1970); Phys. Rev. 3A, 1763 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    F.T. Arrecchi, and V. Degiorgio, Phys. Rev. 3A, 1108 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    H. Gerhardt, H. Welling and A. Güttner, Z. Physik 253, 113 (1972).ADSCrossRefGoogle Scholar
  32. 32.
    H. Risken and K. Seybold, Phys. Lett. 38A, 63 (1972).CrossRefGoogle Scholar
  33. 33.
    P. Graham, and H. Haken, Z. Physik 243, 289 (1971).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    H. Risken, Z. Physik 251, 231 (1972).ADSCrossRefGoogle Scholar
  35. 35.
    H. Haken, H. Risken, and W. Weidlich, Z. Physik 206, 355 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    Ref. 15, p. 386.Google Scholar
  37. 37.
    P.H. Richter, and S. Grossman, Z. Physik 248, 244 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. Risken
    • 1
  1. 1.Universität UlmUlmGermany

Personalised recommendations