Advertisement

Observation of Zero-Degree Pulse Propagation in a Resonant Medium

  • H. P. Grieneisen
  • J. Goldhar
  • N. A. Kurnit
Conference paper

Abstract

Experiments have recently been described[1] in which zero-degree optical pulses[2–5] have been generated and propagated through a resonantly absorbing medium with reduced absorption loss. We briefly review this experiment here and discuss the conditions for low loss propagation. We also describe some initial studies of the evolution of the pulse envelope and discuss the physics underlying this process.

Keywords

Pulse Shape Input Pulse Absorption Length Pulse Envelope Bloch Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.P. Grieneisen, J. Goldhar, N.A. Kurnit, A. Javan and H.R. Schlossberg, Bull. Am. Phys. Soc. 17, 681 (1972), and Appl. Phys. Letters 21, 559 (1972).Google Scholar
  2. 2.
    C.K. Rhodes, A. Szöke and A. Javan, Phys. Rev. Letters 21, 1151 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    F.A. Hopf, C.K. Rhodes, G.L. Lamb, Jr., and M.O. Scully, Phys. Rev. A3, 758 (1971).Google Scholar
  4. 4.
    G.L. Lamb, Jr., Proceedings of the VII International Quantum Electronics Conference, to be published; see also G.L. Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971).MathSciNetGoogle Scholar
  5. 5.
    M.D. Crisp, Phys. Rev. A1, 1604 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    S.L. McCall and E.L. Hahn, Phys. Rev. Letters 18, 908 (1967); Phys. Rev. 183, 457 (1969); see also H.M. Gibbs and R. E. Slusher, Phys. Rev. A5, 1634 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Fletcher, Rev. Sci. Instr. 20, 861 (1949).ADSCrossRefGoogle Scholar
  8. 8.
    F. Shimizu, J. Chem. Phys. 52, 3572 (1970); Appl. Phys. Letters 16, 368 (1970); T. Shimizu and T. Oka, Phys. Rev. A2, 1177 (1970).Google Scholar
  9. 9.
    The more general case of level degeneracy can be treated as in Ref. 2.Google Scholar
  10. 10.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, London, 1961 ) Ch. II, III.Google Scholar
  11. 11.
    R.H. Dicke, Phys. Rev. 93, 99 (1954).ADSMATHCrossRefGoogle Scholar
  12. 12.
    D.C. Burnham and R.Y. Chiao, Phys. Rev. 188, 667 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    M.D. Crisp, Opt. Commun. 4, 199 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    F.A. Hopf and M.O. Scully, Phys. Rev. 179, 399 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    A.L. Bloom, Phys. Rev. 98, 1105 (1955); see also Ref. 14.ADSCrossRefGoogle Scholar
  16. 16.
    A square pulse formally violates the slowly varying envelope approximation made for Eq.(1). The pulse can be turned on and off sufficiently slowly to make (1) applicable without appreciably affecting (15).Google Scholar
  17. 17.
    A.M. Ponte Goncalves, A. Tallet and R. Lefebvre, Phys. Rev. 188, 576 (1969); Phys. Rev. A1, 1472 (1970); see also A. Compaan and I.D. Abella, Phys. Rev. Letters 27, 23 (1971).CrossRefGoogle Scholar
  18. 18.
    Similar conclusions have been emphasized by E.L. Hahn, N.S. Shiren and S.L. McCall, Phys. Letters 37A, 265 (1971); R. Friedberg and S.R. Hartmann, Phys. Letters 37A, 285 (1971) and 38A, 227 (1972); R.H. Picard and C.R. Willis, Phys. Letters 37A, 301 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    R.H. Dicke, Ref. 11 and in Quantum Electronics III, eds. N. Bloembergen and P. Grivet (Columbia University Press, New York, 1964) Vol. 1, p. 35; N.E. Rehler and J.H. Eberly, Phys. Rev. A3, 1735 (1971); R. Bonifacio, P. Schwendimann and F. Haake, Phys. Rev. A4, 302 and 854 (1971); see also Y.C. Cho, N.A. Kurnit, and R. Gilmore, in these Proceedings, p. 755.Google Scholar
  20. 20.
    F.T. Arecchi and E. Courtens, Phys. Rev. A2, 1730 (1970), as modified by Friedberg and Hartmann, Ref. 18; see also I.D. Abella, N.A. Kurnit and S.R. Hartmann, Phys. Rev. 141, 391 (1966), Appendix C.ADSCrossRefGoogle Scholar
  21. 21.
    In Ref. 12, 1/τR = ωp2 z/4c, where ωp is the plasma frequency: classically ωp2 = 4πfNe2/m, where f is the oscillator strength; quantum mechanically, ωp2= 8πNμ2ω)/n.Google Scholar
  22. 22.
    R. Friedberg and S.R. Hartmann, Ref. 18. In the second of these papers and Optics Commun. 2, 301 (1970), these authors also consider the effect of the backward wave, which gives rise to a frequency shift. This shift should be small in our experiment.Google Scholar
  23. 23.
    H.P. Grieneisen, Ph.D. Thesis, M.I.T., 1972.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. P. Grieneisen
    • 1
  • J. Goldhar
    • 1
  • N. A. Kurnit
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations