Photon-Correlation Spectroscopy

  • C. J. Oliver


In order to put photon-correlation spectroscopy in its proper context, it is instructive to consider the various regimes of spectroscopy and the physical situations about which they provide information. Conventional spectroscopy of scattered light before the advent of the laser had two principal limitations. Firstly, the best resolution obtainable with interferometric methods was of the order of 0.1 to 1 cm−1, in the case of a grating spectrometer and 10 MHz to 100 MHz in the case of a Fabry-Perot interferometer. Since the observed frequency shift of scattered light is essentially inversely proportional to the scale of the scattering process involved, it is apparent that these instruments were limited to studying atomic and molecular processes or, at best, such high frequency co-operative processes as scattering from acoustic phonons. Slower, long range processes, such as critical phenomena, processes involving large bodies, such as the diffusion of macromolecules, or processes involving bulk motion as in anemometry can only be studied by using the high resolution attainable with the application of the techniques of light beating, or its more recent derivative, photon correlation spectroscopy.


Wind Tunnel Autocorrelation Function Intensity Fluctuation Scattered Field Heterodyne Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Morgan and L. Mandel, Phys. Rev. Letters 16, 1012 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    D. F. Nelson, P. D. Lazay and M. Lax, Proc. Int. Conf. Light Scattering in Solids, Paris, ed. M. Balkanski (Flammarion Sciences, Paris) p. 477 (1971).Google Scholar
  3. 3.
    H. Z. Cummins, K. Knable, L. Gampel and Y. Yeh, Appl. Phys. Letters 2, 62 (1963).ADSCrossRefGoogle Scholar
  4. 4.
    H. Z. Cummins, International School of Physios’ Enrico Fermi’, Varenna, 1967, ed. R. Glauber ( Academic Press, New York, 1968 ).Google Scholar
  5. 5.
    A.J.F. Siegert, MIT Rad. Lab Report No. 465 (1943).Google Scholar
  6. 6.
    J.H. VanVleck and D. Middleton, Proc. IEEE, 54, 2 (1966).CrossRefGoogle Scholar
  7. 7.
    E. Jakeman and E. R. Pike, J. Phys A, 2, 115 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    E. Jakeman, J. Phys A, 3, 201 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    E. Jakeman, C. J. Oliver and E. R. Pike, J.Phys A, 4, 827 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    E. Jakeman, E. R. Pike and S. Swain, J. Phys A, 3, 155 (1970).CrossRefGoogle Scholar
  11. 11.
    E. Jakeman, E. R. Pike and S. Swain, J. Phys A, 4, 517 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    A. J. Hughes, E. Jakeman, C. J. Oliver and E. R. Pike (1972), to be published.Google Scholar
  13. 13.
    Malvern Digital Correlator System, K7023, Manufactured by Precision Devices and Systems Ltd, Spring Lane, Malvern, Worcs, UK.Google Scholar
  14. 14.
    Y. Yeh and H. Z. Cummins, Appl. Phys. Letters 4, 176 (1964).ADSCrossRefGoogle Scholar
  15. 15.
    N. C. Ford and G. B. Benedek, Phys. Rev. Letters 15, 649 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    F. T. Arecchi, Phys. Rev. 163, 186 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    S. B. Dubin, J. H. Lunacek and G. B. Benedek, Proc. N.A.S., 57, 1164 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    H. Z. Cummins, F. D. Carlson, T. J. Herbert and G. Woods, Biophys J, 9, 518 (1969).CrossRefGoogle Scholar
  19. 19.
    R. Foord, E. Jakeman, R. Jones, C. J. Oliver and E. R. Pike, Southampton Conf. on Lasers and Optoelectronics, IERE Conf. Proc. 14 (1969).Google Scholar
  20. 20.
    R. Foord, E. Jakeman, C. J. Oliver, E. R. Pike, R. J. Blagrove, E. Wood and A. R. Peacocke, Nature, 227, 242 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    C. J. Oliver, E. R. Pike, A. J. Cleave, and A. R. Peacocke, Biopolymers, 10, 1731 (1971).CrossRefGoogle Scholar
  22. 22.
    E. Wood, W. H. Bannister, C. J. Oliver, R. Lontie and R. Witters, Comp. Biochem. Physiol. 40B, 19 (1971).Google Scholar
  23. 23.
    C. J. Oliver, K. Shortridge and G. Belyavin (1972), to be published.Google Scholar
  24. 24.
    P. Berge, B. Volochine, R. Billard and A. Hamelin, C.R. Acad. Sci., Paris, 265, 889 (1967).Google Scholar
  25. 25.
    Bourke et al, Phys. Letters 28A, 692 (1969).ADSGoogle Scholar
  26. 26.
    E. R. Pike, J. Phys D. 5, L23 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    J. Abbis, T. Chubb, A.R.G. Mundell, P.R. Sharpe, C.J. Oliver and E.R. Pike, J. Phys D, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • C. J. Oliver
    • 1
  1. 1.Royal Radar EstablishmentMalvern, WorcsUK

Personalised recommendations