Photo-Counting Inversion in Presence of Dead Time Effects

  • C. L. Mehta
Conference paper


The problem of obtaining information about the statistical properties of light from the photocounting statistics is of considerable interest and is referred to as the photocounting inversion problem. It is well known[1] that if one assumes the different photocounts to be statistically independent then the counting distribution p(n,T) is the Poisson transform of the probability density P(W) of the integrated intensity W:
$${\rm{p}}\left( {{\rm{n,T}}} \right) = \mathop \smallint \limits_o^\infty {\rm{dW}}\,{\rm{P}}\left( {\rm{W}} \right){{\rm{e}}^{{\rm{ - \alpha W}}}}\frac{{{{\left( {{\rm{\alpha W}}} \right)}^{\rm{n}}}}}{{{\rm{n!}}}}{\rm{;W}} = \mathop \smallint \limits_o^T {\rm{I}}\left( {\rm{t}} \right){\rm{dt}}.$$


Probability Density External Field Light Beam Quantum Efficiency Approximation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Mandel, Proc. Phys. Soc. (London) 72, 1037 (1958); P. L. Kelly and W. H. Kleiner, Phys. Rev. 136, A316 (1964); L. Mandel, E. C. G. Sudarshan and E. Wolf, Proc. Phys. Soc (London) 84, 435 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    E. Wolf and C. L. Mehta, Phys. Rev. Letters 13, 705 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    G. Bédard, Phys. Rev. 161, 1304 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    C. L. Mehta, Progress in Optics Vol. VIII, ed. E. Wolf, ( North Holland Publishing Co., Amsterdam, 1970 ) p. 375.Google Scholar
  5. 5.
    G. Bédard, Proc. Phys. Soc. (London) 90, 131 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • C. L. Mehta
    • 1
  1. 1.Indian Institute of TechnologyNew DelhiIndia

Personalised recommendations