Advertisement

Theory of Resonant Light Scattering Processes in Solids

  • Joseph L. Birman
Conference paper

Abstract

A survey is presented of some recent work on the theory of resonant Brillouin and Raman scattering in insulating solids. The major themes which are examined are the effect of intermediate state interactions, and effects of spatial dispersion.

Keywords

Acoustic Phonon Spatial Dispersion Incident Frequency Infinite Crystal Polariton Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Light Scattering in Solids” ed. M. Balkanski (Flammarion, Paris 1971). Proceedings of the Second International Conference on Light Scattering held in Paris, July 1971. This contains papers dealing with most of the active topics. This volume can serve as a general reference for the present survey.Google Scholar
  2. 2.
    R. Loudon, Proc. Roy. Soc. A275, 218 (1963).ADSCrossRefGoogle Scholar
  3. 3.
    R.K. Chang, J.L. Lewis, R.L. Wadsack, Phys.Rev. Lett. 25, 814 (1970); and ref. 1, pps. 41–46.ADSCrossRefGoogle Scholar
  4. 4.
    J.L. Birman and A.K. Ganguly, Phys. Rev. Lett. 17,647 (1966); Phys. Rev. 162, 806 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    R.C.C. Leite, J.F. Scott, T.C. Damen, Phys. Rev. Lett. 22, 780 (1969); Phys. Rev. 188, 1285 (1969).Google Scholar
  6. 6.
    B. Bendow, and J.L. Birman in ref. 1, pp. 19–25.Google Scholar
  7. 7.
    B. Bendow, J.L. Birman, A.K. Ganguly, T.C. Damen, R.C. Leite, J.F. Scott, Optics Comm. 1 267 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    R. Zeyher, C.S. Ting, J.L. Birman (in preparation).Google Scholar
  9. 9.
    Y. Oka, T. Kushida, Tech. Report A501, Inst. Solid State Physics, Tokyo, January 1972, to be published in J. Phys. Soc., Japan.Google Scholar
  10. 10.
    U. Fano, Phys. Rev. 103,1202 (1956); J.J. Hopfield, Phys.Rev. 112,1558 (1958); Phys. Rev. 182,945 (1969); D. Mills, E. Burstein, Phys. Rev. 188, 1465 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    B. Bendow and J.L. Birman, Phys. Rev. B1, 1678 (1970);ADSGoogle Scholar
  12. B. Bendow, Phys. Rev. B2,5051 (1970); ibid. B4, 552 (1971).Google Scholar
  13. 12.
    Much of the literature, especially from Soviet authors is given in V.M. Agranovich,V.L. Ginzburg “Spatial Dispersion in Crystal Optics and The Theory of Excitons” J. Wiley,N.Y. 1966; and in Progress in Optics, Vol.IX, ed. E. Wolf, (North Holland, Amsterdam, 1971 ) Chap. VI, “Crystal Optics with Spatial Dispersion” by the same authors.Google Scholar
  14. 13.
    D.G. Thomas and J.J. Hopfield, Phys. Rev. 132, 563 (1963); and also Ref. 12.ADSCrossRefGoogle Scholar
  15. 14.
    J.J. Sein, Ph.D. Thesis, New York University 1969, Phys. Letters 32A, 141 (1970); J.L. Birman and J.J. Sein, Phys. Rev. B6, 2482 (1972).Google Scholar
  16. 15.
    R. Zeyher, J.L. Birman, W. Brenig, I and II, Phys. Rev. B6, 4613, 4617 (1972).ADSGoogle Scholar
  17. 16.
    G. Agarwal, D. Pattanayak, E. Wolf, Phys. Rev. Letters 27, 1022 (1971); Optics Comm. 4, 255 (1971); ibid. 4, 260 (1971).ADSCrossRefGoogle Scholar
  18. 17.
    A slowly varying factor of ω4 is neglected in Eqs.(3.3), (3.4), (3.5), (3.8), (3.9) since this is not important near resonance.Google Scholar
  19. 18.
    The second term in Eq.(4.9) can be written: X1R(o)G+ (ξ) where R is the reflectivity of the exciton, Xi and G+ are defined in Eqs.(4.5), (4.6) and ξ ≡ [(X−X′)2+ (y−y)2+ (z+z′)1/2.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Joseph L. Birman
    • 1
  1. 1.New York UniversityNew YorkUSA

Personalised recommendations